期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
联邦学习的公平性综述
1
作者 张淑芬 张宏扬 +1 位作者 任志强 陈学斌 《计算机应用》 北大核心 2025年第1期1-14,共14页
联邦学习(FL)凭借分布式结构和隐私安全的优势快速发展,但大规模FL引发的公平性问题影响了FL系统的可持续性。针对FL的公平性问题,对近年FL公平性的研究工作进行了系统梳理和深度分析。首先,对FL的工作流程和定义进行了解释,总结了FL中... 联邦学习(FL)凭借分布式结构和隐私安全的优势快速发展,但大规模FL引发的公平性问题影响了FL系统的可持续性。针对FL的公平性问题,对近年FL公平性的研究工作进行了系统梳理和深度分析。首先,对FL的工作流程和定义进行了解释,总结了FL中的偏见和公平性概念;其次,详细归纳了FL公平性研究中常用的数据集,探讨了公平性研究所面临的挑战;最后,从数据源选择、模型优化、贡献评估和激励机制这4个方面归纳梳理了相关研究工作的优缺点、适用场景以及实验设置等,并展望了FL公平性未来的研究方向和趋势。 展开更多
关键词 联邦学习 公平性 数据选择 模型优化 贡献评估 激励机制
在线阅读 下载PDF
面向个性化与公平性的联邦学习算法
2
作者 张宏扬 张淑芬 谷铮 《计算机应用》 北大核心 2025年第7期2123-2131,共9页
作为一种分布式优化范式,联邦学习(FL)允许大量资源有限的客户端节点在不共享数据时协同训练模型。然而,传统联邦学习算法,如FedAvg,通常未充分考虑公平性的问题。在实际场景中,数据分布通常具备高度异构性,常规的聚合操作可能会使模型... 作为一种分布式优化范式,联邦学习(FL)允许大量资源有限的客户端节点在不共享数据时协同训练模型。然而,传统联邦学习算法,如FedAvg,通常未充分考虑公平性的问题。在实际场景中,数据分布通常具备高度异构性,常规的聚合操作可能会使模型对某些客户端产生偏见,导致全局模型在客户端本地的性能分布出现巨大差异。针对这一问题,提出一种面向个性化与公平性的联邦学习FedPF(Federated learning for Personalization and Fairness)算法。FedPF旨在有效减少联邦学习中低效的聚合行为,并通过寻找全局模型与本地模型的相关性,在客户端之间分配个性化模型,从而在保证全局模型性能的同时,使客户端本地性能分布更均衡。将FedPF在Synthetic、MNIST以及CIFAR10数据集上进行实验和性能分析,并与FedProx、q-FedAvg和FedAvg这3种联邦学习算法进行对比。实验结果表明,FedPF在有效性和公平性上均得到了有效提升。 展开更多
关键词 联邦学习 公平 个性化 异构数据 客户端选择
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部