期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LSTM-CGAN的高炉透气性指数预测数值模型
1
作者 陈焕龙 杨佳毅 +2 位作者 田铁磊 张玉柱 龙跃 《冶金能源》 北大核心 2025年第4期55-61,共7页
高炉透气性指数是表征高炉稳定运行的一个关键指标,其精准预测对于保障炉况稳定运行具有重要意义。基于某钢铁厂3号炉全年的生产数据,文章提出了一种基于长短时记忆网络(LSTM)与条件生成对抗网络(CGAN)相结合的高炉透气性指数预测模型(L... 高炉透气性指数是表征高炉稳定运行的一个关键指标,其精准预测对于保障炉况稳定运行具有重要意义。基于某钢铁厂3号炉全年的生产数据,文章提出了一种基于长短时记忆网络(LSTM)与条件生成对抗网络(CGAN)相结合的高炉透气性指数预测模型(LSTM-CGAN)。在数据预处理阶段,采用了均值—差分结合方法、指数平滑处理以及标准化方法对数据进行预处理,以确保数据的质量和模型的泛化能力。实验结果表明,LSTM-CGAN预测模型能够实现高炉透气性指数的预测,且在误差为0.1的条件下,预测命中率达到86.6%。最后通过与其他预测模型比较,LSTM-CGAN模型在预测精度和稳定性方面均表现优越,其均方误差最小为0.14537、R^(2)最高为0.84280,表明LSTM-CGAN预测模型对高炉透气性指数预测具有较强的应用潜力,为保障高炉的稳定顺行提供了理论基础。 展开更多
关键词 透气性指数 条件生成对抗网络 长短时记忆网络 高炉 大数据
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部