期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CNN-Transformer结合对比学习的高光谱与LiDAR数据协同分类
1
作者 吴海滨 戴诗语 +2 位作者 王爱丽 岩堀祐之 于效宇 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1087-1100,共14页
针对高光谱图像(hyperspectral images,HSI)与LiDAR数据多模态分类任务中的跨模态信息表达和特征对齐等问题,提出一种基于对比学习CNN-Transformer高光谱和LiDAR数据协同分类网络(Contrastive Learning based CNNTransformer Network,CL... 针对高光谱图像(hyperspectral images,HSI)与LiDAR数据多模态分类任务中的跨模态信息表达和特征对齐等问题,提出一种基于对比学习CNN-Transformer高光谱和LiDAR数据协同分类网络(Contrastive Learning based CNNTransformer Network,CLCT-Net)。CLCT-Net通过由ConvNeXt V2 Block构成的共有特征提取模块,获得不同模态间的共性特征,解决异构传感器数据之间语义对齐的问题。构建了包含空间-通道分支和光谱上下文分支的双分支HSI编码器,以及结合频域自注意力机制的LiDAR编码器,以获取更丰富的特征表示。利用集成对比学习进行分类,进一步提升多模态数据协同分类的精度。在Houston 2013和Trento数据集上的实验结果表明,相较于其他高光谱图像和Li‐DAR数据分类模型,本文所提模型获得了更高的地物分类精度,分别达到了92.01%和98.90%,实现了跨模态数据特征的深度挖掘和协同提取。 展开更多
关键词 高光谱图像 激光雷达数据 TRANSFORMER 卷积神经网络 对比学习
在线阅读 下载PDF
基于空间金字塔注意力机制残差网络的高光谱图像分类 被引量:1
2
作者 刘和 宋璎珞 +3 位作者 胡龙湘 刘国辉 王侃 王爱丽 《液晶与显示》 CAS CSCD 北大核心 2024年第6期833-843,共11页
为了提取高光谱图像的空间-光谱联合特征,本文提出了一种基于改进的空间金字塔注意力机制残差网络的高光谱图像分类模型。首先采用主成分分析法去除光谱冗余,结合空间金字塔注意力机制,改进残差网络的高光谱图像分类模型获取精细化特征... 为了提取高光谱图像的空间-光谱联合特征,本文提出了一种基于改进的空间金字塔注意力机制残差网络的高光谱图像分类模型。首先采用主成分分析法去除光谱冗余,结合空间金字塔注意力机制,改进残差网络的高光谱图像分类模型获取精细化特征。然后利用空间金字塔注意力模型实现多尺度联合特征关注,提升对联合特征的敏感性,并有效地强调并聚焦空间和光谱信息,实现信息交互。最后经过Softmax分类器获得分类标签。本文提出的方法在MUUFL和Tento数据集上进行了实验,结果表明,本文算法的总体分类精度分别达到了94.08%和98.32%。相比于其他高光谱分类模型,本文模型的收敛速度较快,在分类性能上取得了明显的提升,获得了更高的地物分类精度。 展开更多
关键词 高光谱 图像分类 注意力机制 空间-光谱特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部