针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,...针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,将局部特征和全局特征融合,得到混合特征的特征矩阵。通过深度学习实现对应矩阵求解中相关参数的自动优化,最后利用加权奇异值分解(singular value decomposition,SVD)得到变换矩阵,完成配准。在ModelNet40数据集上的实验表明,和最远点采样相比,所提算法耗时减少45.36%;而配准结果和基于特征学习的鲁棒点匹配(robust point matching using learned features,RPM-Net)相比,平移矩阵均方误差降低5.67%,旋转矩阵均方误差降低13.1%。在自制点云数据上的实验,证实了算法在真实物体上配准的有效性。展开更多
针对当前两阶段的点云目标检测算法PointRCNN:3D object proposal generation and detection from point cloud在点云降采样阶段时间开销大以及低效性的问题,本研究基于PointRCNN网络提出RandLA-RCNN(random sampling and an effectivel...针对当前两阶段的点云目标检测算法PointRCNN:3D object proposal generation and detection from point cloud在点云降采样阶段时间开销大以及低效性的问题,本研究基于PointRCNN网络提出RandLA-RCNN(random sampling and an effectivelocal feature aggregator with region-based convolu-tional neural networks)架构。首先,利用随机采样方法在处理庞大点云数据时的高效性,对大场景点云数据进行下采样;然后,通过对输入点云的每个近邻点的空间位置编码,有效提高从每个点的邻域提取局部特征的能力,并利用基于注意力机制的池化规则聚合局部特征向量,获取全局特征;最后使用由多个局部空间编码单元和注意力池化单元叠加形成的扩展残差模块,来进一步增强每个点的全局特征,避免关键点信息丢失。实验结果表明,该检测算法在保留PointRCNN网络对3D目标的检测优势的同时,相比PointRCNN检测速度提升近两倍,达到16 f/s的推理速度。展开更多
文摘针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,将局部特征和全局特征融合,得到混合特征的特征矩阵。通过深度学习实现对应矩阵求解中相关参数的自动优化,最后利用加权奇异值分解(singular value decomposition,SVD)得到变换矩阵,完成配准。在ModelNet40数据集上的实验表明,和最远点采样相比,所提算法耗时减少45.36%;而配准结果和基于特征学习的鲁棒点匹配(robust point matching using learned features,RPM-Net)相比,平移矩阵均方误差降低5.67%,旋转矩阵均方误差降低13.1%。在自制点云数据上的实验,证实了算法在真实物体上配准的有效性。
文摘针对当前两阶段的点云目标检测算法PointRCNN:3D object proposal generation and detection from point cloud在点云降采样阶段时间开销大以及低效性的问题,本研究基于PointRCNN网络提出RandLA-RCNN(random sampling and an effectivelocal feature aggregator with region-based convolu-tional neural networks)架构。首先,利用随机采样方法在处理庞大点云数据时的高效性,对大场景点云数据进行下采样;然后,通过对输入点云的每个近邻点的空间位置编码,有效提高从每个点的邻域提取局部特征的能力,并利用基于注意力机制的池化规则聚合局部特征向量,获取全局特征;最后使用由多个局部空间编码单元和注意力池化单元叠加形成的扩展残差模块,来进一步增强每个点的全局特征,避免关键点信息丢失。实验结果表明,该检测算法在保留PointRCNN网络对3D目标的检测优势的同时,相比PointRCNN检测速度提升近两倍,达到16 f/s的推理速度。