期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的双阶段水下图像增强方法
1
作者 路斯棋 管凤旭 +1 位作者 赖海涛 杜雪 《北京航空航天大学学报》 北大核心 2025年第1期321-332,共12页
由于水体对光线不同粒子的吸收能力具有一定差异,水下采集到的图像往往存在严重的退化现象,严重影响水下机器人对环境的感知。传统的图像处理方法和基于退化模型的图像恢复算法受到水下环境的复杂性和物理参数不确定性的影响往往表现出... 由于水体对光线不同粒子的吸收能力具有一定差异,水下采集到的图像往往存在严重的退化现象,严重影响水下机器人对环境的感知。传统的图像处理方法和基于退化模型的图像恢复算法受到水下环境的复杂性和物理参数不确定性的影响往往表现出较差的泛化能力。为提高水下图像的视觉效果,利用深度学习模型强大的学习能力,提出一种基于卷积神经网络的双阶段水下图像增强方法,通过图像损坏和图像恢复两个阶段的处理将退化的水下图像增强为视觉效果优秀的近空气图像。在Challenge60、U45、EUVP和RUIE数据集上的测试结果表明,提出的方法相比于已有水下图像复原、增强算法具有更好的增强效果,水下图像质量指标(UIQM)提升了5.18%,水下彩色图像质量评价(UCIQE)指标提升了6.64%。 展开更多
关键词 卷积神经网络 深度学习 双阶段 水下图像增强 水下图像复原
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部