在雷达通信一体化领域,设计出既能实现雷达探测功能又能实现通信信息传输功能的同波形信号是至关重要的一个环节。针对在雷达信号脉冲内对通信信息调制后自相关性能低的问题,提出一种高频带利用率以及低自相关旁瓣的基于非线性调频(NLFM...在雷达通信一体化领域,设计出既能实现雷达探测功能又能实现通信信息传输功能的同波形信号是至关重要的一个环节。针对在雷达信号脉冲内对通信信息调制后自相关性能低的问题,提出一种高频带利用率以及低自相关旁瓣的基于非线性调频(NLFM)信号的雷达通信一体化信号形式。将NLFM信号作为16阶正交幅度调制(16QAM)信号的载波,建立NLFM-16QAM雷达通信一体化信号模型,分析该信号的模糊函数以及相关的雷达与通信性能。在此基础上,针对所提出的NLFM-16QAM信号因其通信基带信号的随机性使雷达功能受到影响,从而降低了运动目标探测性能这一问题,将一体化系统的接收端作出改进,提出小波包降噪联合自然梯度算法对NLFM-16QAM信号进行接收处理。仿真结果表明,所提信号的频带利用率明显高于低阶调制的雷达通信一体化信号的频带利用率,在自相关性能方面,所提信号比16QAM-LFM信号的积分旁瓣比降低了23.07 d B,峰值旁瓣比降低了26.08 d B,NLFM-16QAM信号在经过改进接收端的联合算法处理后,运动目标的检测结果获得显著改善。展开更多
针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-fr...针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。展开更多
在设备到设备通信的车联网场景(Vehicle to Everything-Device to Device,V2X-D2D)下,信道的快速时变会导致基站(Base Station,BS)端通常无法获取完美信道状态信息(Channel State Information,CSI).为解决现有频谱分配方案不适用于V2X-...在设备到设备通信的车联网场景(Vehicle to Everything-Device to Device,V2X-D2D)下,信道的快速时变会导致基站(Base Station,BS)端通常无法获取完美信道状态信息(Channel State Information,CSI).为解决现有频谱分配方案不适用于V2X-D2D场景的问题,考虑车对车(Vehicle-to-Vehicle,V2V)链路可靠性、最大发射功率、频谱复用的约束,建立V2X的场景模型与通信模型.明确了在满足V2V链路可靠性的前提下,最大化车与基础设施(Vehicle to Infrastructure,V2I)链路的遍历容量的优化目标;在考虑信道快速时变影响的情况下,推导V2V链路的中断概率、V2I链路遍历容量的闭式表达式;针对一对一模式和一对多模式下的频谱分配问题,分别提出基于改进匈牙利算法的快速频谱分配方案和基于图着色-偏好列表的频谱分配方案.仿真结果表明:与现有算法相比,基于改进匈牙利算法的快速频谱分配方案接入率更高、复杂度更低,基于图着色-偏好列表的频谱分配方案也具有接入率、频谱利用率高的优势.展开更多
针对复杂电磁环境下雷达复合干扰识别困难和网络模型复杂度高的问题,将多标签分类与改进的ShuffleNet V2相结合,提出一种轻量化的多标签ShuffleNet(multi-labeling ShuffleNet, ML-SNet)雷达复合干扰识别算法。首先,使用轻量化的Shuffle...针对复杂电磁环境下雷达复合干扰识别困难和网络模型复杂度高的问题,将多标签分类与改进的ShuffleNet V2相结合,提出一种轻量化的多标签ShuffleNet(multi-labeling ShuffleNet, ML-SNet)雷达复合干扰识别算法。首先,使用轻量化的ShuffleNet V2作为主干网络,引入SimAM(similarity-based attention module)注意力机制,提高网络特征提取能力。其次,使用漏斗激活线性整流函数(funnel activation rectified linear unit, FReLU)代替线性整流单元(rectified linear unit, ReLU)激活函数,减少特征图的信息损失。最后,使用多标签分类算法对网络输出进行分类,得到识别结果。实验结果表明,在干噪比范围为-10~10 dB的情况下,所提算法对15类雷达复合干扰的平均识别率为97.9%。与其他网络相比,所提算法具有较低的计算复杂度,而且识别性能表现最佳。展开更多
文摘在雷达通信一体化领域,设计出既能实现雷达探测功能又能实现通信信息传输功能的同波形信号是至关重要的一个环节。针对在雷达信号脉冲内对通信信息调制后自相关性能低的问题,提出一种高频带利用率以及低自相关旁瓣的基于非线性调频(NLFM)信号的雷达通信一体化信号形式。将NLFM信号作为16阶正交幅度调制(16QAM)信号的载波,建立NLFM-16QAM雷达通信一体化信号模型,分析该信号的模糊函数以及相关的雷达与通信性能。在此基础上,针对所提出的NLFM-16QAM信号因其通信基带信号的随机性使雷达功能受到影响,从而降低了运动目标探测性能这一问题,将一体化系统的接收端作出改进,提出小波包降噪联合自然梯度算法对NLFM-16QAM信号进行接收处理。仿真结果表明,所提信号的频带利用率明显高于低阶调制的雷达通信一体化信号的频带利用率,在自相关性能方面,所提信号比16QAM-LFM信号的积分旁瓣比降低了23.07 d B,峰值旁瓣比降低了26.08 d B,NLFM-16QAM信号在经过改进接收端的联合算法处理后,运动目标的检测结果获得显著改善。
文摘以二进制正交键控(binary orthogonal keying,BOK)为传统方法调制Chirp信号的检测手段日益丰富,针对常用时频分析手段分数阶傅里叶变换和短时傅里叶变换对Chirp信号的高破译性问题,提出了一种将信息映射到Chirp信号时域的新型调制方式,即时变信息映射(time varying-information mapping,TVIM)调制,通过构建时域携带信息的调制模式,解决了周期能量聚敛特性,增加了以BOK为检测思想的信息干扰,加强了波形的低截获概率(low probability of intercept,LPI)。以数学推导和仿真分析的方法,探究了新型调制方式的误码特性、时频分析下LPI特性及先验信息抗破译性。理论分析和仿真验证表明,TVIM调制架构下,可保证比特信噪比在13 dB前误码率达到10-4,并提高了波形LPI性能。
文摘针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。
文摘在设备到设备通信的车联网场景(Vehicle to Everything-Device to Device,V2X-D2D)下,信道的快速时变会导致基站(Base Station,BS)端通常无法获取完美信道状态信息(Channel State Information,CSI).为解决现有频谱分配方案不适用于V2X-D2D场景的问题,考虑车对车(Vehicle-to-Vehicle,V2V)链路可靠性、最大发射功率、频谱复用的约束,建立V2X的场景模型与通信模型.明确了在满足V2V链路可靠性的前提下,最大化车与基础设施(Vehicle to Infrastructure,V2I)链路的遍历容量的优化目标;在考虑信道快速时变影响的情况下,推导V2V链路的中断概率、V2I链路遍历容量的闭式表达式;针对一对一模式和一对多模式下的频谱分配问题,分别提出基于改进匈牙利算法的快速频谱分配方案和基于图着色-偏好列表的频谱分配方案.仿真结果表明:与现有算法相比,基于改进匈牙利算法的快速频谱分配方案接入率更高、复杂度更低,基于图着色-偏好列表的频谱分配方案也具有接入率、频谱利用率高的优势.
文摘针对复杂电磁环境下雷达复合干扰识别困难和网络模型复杂度高的问题,将多标签分类与改进的ShuffleNet V2相结合,提出一种轻量化的多标签ShuffleNet(multi-labeling ShuffleNet, ML-SNet)雷达复合干扰识别算法。首先,使用轻量化的ShuffleNet V2作为主干网络,引入SimAM(similarity-based attention module)注意力机制,提高网络特征提取能力。其次,使用漏斗激活线性整流函数(funnel activation rectified linear unit, FReLU)代替线性整流单元(rectified linear unit, ReLU)激活函数,减少特征图的信息损失。最后,使用多标签分类算法对网络输出进行分类,得到识别结果。实验结果表明,在干噪比范围为-10~10 dB的情况下,所提算法对15类雷达复合干扰的平均识别率为97.9%。与其他网络相比,所提算法具有较低的计算复杂度,而且识别性能表现最佳。