期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多传感器分布式信息融合Wiener状态估值器 被引量:2
1
作者 李云 王欣 邓自立 《科学技术与工程》 2005年第23期1785-1791,共7页
应用现代时间序列分析方法,基于ARMA新息模型、白噪声估值器和观测预报器,在按矩阵加权、按 标量加权和按对角阵加权的线性最小方差最优信息融合规则下,提出了相应的三种最优分布式融合Wiener 状态估值器,可统一处理融合滤波、平滑和预... 应用现代时间序列分析方法,基于ARMA新息模型、白噪声估值器和观测预报器,在按矩阵加权、按 标量加权和按对角阵加权的线性最小方差最优信息融合规则下,提出了相应的三种最优分布式融合Wiener 状态估值器,可统一处理融合滤波、平滑和预报问题。为了计算最优加权,提出了状态估计误差方差阵和互 协方差阵的计算公式。同单传感器情形相比,可提高滤波精度。一个带四传感器目标跟踪系统的仿真例子 说明了其有效性和正确性,并说明了三种加权融合估计精度无显著差异,因而采用按标量加权融合器可显著 减小计算负担,便于实时应用。 展开更多
关键词 多传感器信息融合 线性最小方差最优融合 Wiener状态估值器
在线阅读 下载PDF
自校正标量加权信息融合Kalman滤波器
2
作者 李云 李春波 邓自立 《科学技术与工程》 2005年第22期1696-1700,共5页
对含未知噪声统计的多传感器系统,用现代时间序列分析方法,基于自回归滑动平均(ARMA)新息模型的在线辨识和求解相关函数矩阵方程组,可在线估计噪声统计,进而在按标量加权线性最小方差最优信息融合准则下,提出了自校正标量加权信息融合Ka... 对含未知噪声统计的多传感器系统,用现代时间序列分析方法,基于自回归滑动平均(ARMA)新息模型的在线辨识和求解相关函数矩阵方程组,可在线估计噪声统计,进而在按标量加权线性最小方差最优信息融合准则下,提出了自校正标量加权信息融合Kalman滤波器。它具有渐近最优性,且比每个局部自校正Kalman滤波器精度高,算法简单,便于实时应用。一个目标跟踪系统的仿真例子说明了其有效性。 展开更多
关键词 多传感器信息融合 标量加权融合ARMA新息模型 系统辨识 噪声方差估计 自校 KALMAN滤波器
在线阅读 下载PDF
自校正加权观测融合Kalman估值器 被引量:2
3
作者 李云 郝钢 邓自立 《科学技术与工程》 2006年第2期116-120,共5页
对于带未知噪声统计的多传感器系统,应用现代时间序列分析方法,基于滑动平均(MA)新息模型参数的两段递推最小二乘法在线辨识,可在线估计未知噪声方差,进而提出了一种加权观测融合自校正Kalman估值器,可统一处理自校正滤波、预报和平滑问... 对于带未知噪声统计的多传感器系统,应用现代时间序列分析方法,基于滑动平均(MA)新息模型参数的两段递推最小二乘法在线辨识,可在线估计未知噪声方差,进而提出了一种加权观测融合自校正Kalman估值器,可统一处理自校正滤波、预报和平滑问题,并证明了它的收敛性,即若MA新息模型参数估计是一致的,则它与相应的最优加权观测融合Kalman估值器的误差收敛到零,因而具有渐近全局最优性。一个带3传感器跟踪系统的仿真例子说明了其有效性。 展开更多
关键词 多传感器 加权观测融合 KALMAN估值器 辨识 自校正 噪声方差估计现代时间序列分析疗法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部