期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
GFENet:基于Transformer的高效医学图像分割网络 被引量:1
1
作者 孙红 朱江明 +3 位作者 吴一凡 徐广辉 任丽博 杨晨 《小型微型计算机系统》 CSCD 北大核心 2024年第7期1728-1733,共6页
医学图像分割技术在疾病诊断中发挥着重要作用,针对传统网络分割模型中存在参数量大、网络计算效率低等问题,本文提出名为GFENet的高性能低复杂度分割网络,GFENet以金字塔结构的视觉Transformer作为网络主干提取图像特征,分别采用线性... 医学图像分割技术在疾病诊断中发挥着重要作用,针对传统网络分割模型中存在参数量大、网络计算效率低等问题,本文提出名为GFENet的高性能低复杂度分割网络,GFENet以金字塔结构的视觉Transformer作为网络主干提取图像特征,分别采用线性预测模块和渐进式局域解码器对提取出来的低级特征和高级特征进行局部增强处理,最后采用GFE模块中的全局注意力机制将位置信息嵌入高级特征.在Kvasir和CVC-ClinicDB数据集上进行实验验证,GFENet的mDice分别为94.1%和94.6%;其在CVC-ColonDB和ETIS数据集上的泛化性能优于其他对比模型.为验证模型低复杂度的同时保持高分割准确率,本文将GFENet与现有的高性能模型和轻量化模型进行对比,GFENet在CVC-ColonDB数据集上以81.5%的mDice高于其它对比模型,以23.1M的参数量优于其他高性能分割模型. 展开更多
关键词 图像分割 TRANSFORMER GFENet 全局注意力机制 息肉分割
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部