期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于融合视觉Transformer与边缘引导编码-解码网络(RET-Net)算法分割脊柱MRI 被引量:4
1
作者 孙红 莫光萍 +1 位作者 徐广辉 杨晨 《中国医学影像技术》 CSCD 北大核心 2023年第4期577-581,共5页
目的 提出融合视觉Transformer与边缘引导的编码-解码网络(RET-Net)算法,观察其分割脊柱MRI的效能。方法 基于二类分割公开脊柱数据集spinesagt2wdataset3选取195幅脊柱三维T2WI及经过标注的对应脊柱掩码,对脊柱区域与背景设置不同标签... 目的 提出融合视觉Transformer与边缘引导的编码-解码网络(RET-Net)算法,观察其分割脊柱MRI的效能。方法 基于二类分割公开脊柱数据集spinesagt2wdataset3选取195幅脊柱三维T2WI及经过标注的对应脊柱掩码,对脊柱区域与背景设置不同标签。将残差卷积网络嵌入编码-解码网络,引入边缘模块引导网络,关注脊柱边缘粒度信息并提取边缘特征;结合视觉Transformer与残差网络提取脊柱全局及局部信息,构建RET-Net分割脊柱的深度学习模型,评价其分割脊柱的效能。结果 利用RET-Net算法能准确分割脊柱椎骨区域,边缘分割较为平滑;RET-Net在数据集中的戴斯相似系数(DSC)为90.15%,交并比(IOU)为81.06%,敏感度(SE)为92.71%,特异度(SP)为99.57%,准确率(ACC)为98.61%,豪斯多夫距离(HD)为1.84 mm,其DSC及ACC等均优于UNet、PSPNet和Attention-UNet等基础分割模型。结论 融合视觉Transformer与边缘引导RET-Net算法分割脊柱MRI效能较佳。 展开更多
关键词 脊柱 磁共振成像 诊断 计算机辅助
在线阅读 下载PDF
融合掩码机制的图卷积文本分类模型 被引量:4
2
作者 孙红 黄雪阳 +2 位作者 徐广辉 陆欣荣 任丽博 《中文信息学报》 CSCD 北大核心 2023年第9期98-107,共10页
图卷积神经网络在文本分类领域受到广泛关注,但同时存在过平滑的问题。此外,现有研究中掩码机制是在文本结构上进行融合,可能并不完全适用于基于图卷积神经网络的文本分类方法。因此,该文针对图结构提出了融合掩码机制的图卷积神经网络M... 图卷积神经网络在文本分类领域受到广泛关注,但同时存在过平滑的问题。此外,现有研究中掩码机制是在文本结构上进行融合,可能并不完全适用于基于图卷积神经网络的文本分类方法。因此,该文针对图结构提出了融合掩码机制的图卷积神经网络MaskGCN,直接将掩码机制引入文本图结构,并采用全局共享矩阵动态构建文本级别的多粒度文本图。在THUCNews、今日头条和SougoCS数据集上的实验表明,该文模型在有效抑制过平滑的同时,相比于其他文本分类模型取得了较优的结果。 展开更多
关键词 自然语言处理 文本分类 图卷积神经网络 掩码机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部