期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多源数据深度融合的金融时间序列预测
被引量:
4
1
作者
刘颖
李惠迪
谭博元
《统计与决策》
CSSCI
北大核心
2022年第23期52-56,共5页
文章提出一种双阶段深度学习的金融时间序列预测模型,研究股民评论、金融新闻资讯与股票指标多源数据对股票市场波动的影响。该模型运用word2vec并结合卷积神经网络对非结构化文本数据进行情感分析,计算情感权重并与股票指数联合;通过...
文章提出一种双阶段深度学习的金融时间序列预测模型,研究股民评论、金融新闻资讯与股票指标多源数据对股票市场波动的影响。该模型运用word2vec并结合卷积神经网络对非结构化文本数据进行情感分析,计算情感权重并与股票指数联合;通过双向长短时记忆网络结合注意力机制关注文本重点语义分布,提升全局时序信息敏感度,从而完成非线性、时变性的股指预测。所提模型相比于单一使用股票指数,其均方误差降低0.264,比BiLSTM股票预测模型降低了0.186。实证结果表明,端对端的多源数据融合情感分析模型能够有效解决因多级因素导致的股票市场波动性与不规律性,从而对股票指数进行预测。
展开更多
关键词
深度学习
多源数据
情感分析
金融时间序列预测
在线阅读
下载PDF
职称材料
题名
基于多源数据深度融合的金融时间序列预测
被引量:
4
1
作者
刘颖
李惠迪
谭博元
机构
吉林财经大学
管理科学与信息工程学院
吉林财经大学吉林省金融科技重点实验室
吉林财经大学
吉林省
商务大数据研究中心
出处
《统计与决策》
CSSCI
北大核心
2022年第23期52-56,共5页
基金
国家社会科学基金资助项目(20BTJ062)。
文摘
文章提出一种双阶段深度学习的金融时间序列预测模型,研究股民评论、金融新闻资讯与股票指标多源数据对股票市场波动的影响。该模型运用word2vec并结合卷积神经网络对非结构化文本数据进行情感分析,计算情感权重并与股票指数联合;通过双向长短时记忆网络结合注意力机制关注文本重点语义分布,提升全局时序信息敏感度,从而完成非线性、时变性的股指预测。所提模型相比于单一使用股票指数,其均方误差降低0.264,比BiLSTM股票预测模型降低了0.186。实证结果表明,端对端的多源数据融合情感分析模型能够有效解决因多级因素导致的股票市场波动性与不规律性,从而对股票指数进行预测。
关键词
深度学习
多源数据
情感分析
金融时间序列预测
Keywords
deep learning
multi-source data
sentiment analysis
financial time series prediction
分类号
F064.1 [经济管理—政治经济学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多源数据深度融合的金融时间序列预测
刘颖
李惠迪
谭博元
《统计与决策》
CSSCI
北大核心
2022
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部