期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多源数据深度融合的金融时间序列预测 被引量:4
1
作者 刘颖 李惠迪 谭博元 《统计与决策》 CSSCI 北大核心 2022年第23期52-56,共5页
文章提出一种双阶段深度学习的金融时间序列预测模型,研究股民评论、金融新闻资讯与股票指标多源数据对股票市场波动的影响。该模型运用word2vec并结合卷积神经网络对非结构化文本数据进行情感分析,计算情感权重并与股票指数联合;通过... 文章提出一种双阶段深度学习的金融时间序列预测模型,研究股民评论、金融新闻资讯与股票指标多源数据对股票市场波动的影响。该模型运用word2vec并结合卷积神经网络对非结构化文本数据进行情感分析,计算情感权重并与股票指数联合;通过双向长短时记忆网络结合注意力机制关注文本重点语义分布,提升全局时序信息敏感度,从而完成非线性、时变性的股指预测。所提模型相比于单一使用股票指数,其均方误差降低0.264,比BiLSTM股票预测模型降低了0.186。实证结果表明,端对端的多源数据融合情感分析模型能够有效解决因多级因素导致的股票市场波动性与不规律性,从而对股票指数进行预测。 展开更多
关键词 深度学习 多源数据 情感分析 金融时间序列预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部