海量图像以流数据的形式实时涌入网络,使得在线图像检索需求越来越迫切。为了保证在线图像检索性能,研究人员利用在线哈希算法实时更新哈希函数,并重新学习新、旧数据集的哈希码。然而,随着旧数据集的日益积累,在线更新旧数据集的哈希...海量图像以流数据的形式实时涌入网络,使得在线图像检索需求越来越迫切。为了保证在线图像检索性能,研究人员利用在线哈希算法实时更新哈希函数,并重新学习新、旧数据集的哈希码。然而,随着旧数据集的日益积累,在线更新旧数据集的哈希码会严重影响在线检索效率。为此,提出非对称深度在线哈希(asymmetric deep online Hashing,ADOH),以非对称的方式深度学习在线哈希网络,并且仅生成新数据集的哈希码,无须更新旧数据集的哈希码,能够有效地提升在线检索效率。ADOH算法通过最小化哈希码内积与相似度矩阵之间的差异,保持样本对之间的语义相似性关系。另外,ADOH算法建立分类损失项和标签嵌入模块学习样本的语义信息,使生成的哈希码更具备语义鉴别性。在3个广泛使用的数据集cifar-10、mnist和Places205上设置在线近邻检索对比实验,结果表明ADOH算法的在线近邻检索性能优于目前8种较先进的在线哈希算法。展开更多
利用规约规则可以约简EPCCL理论的规模,从而提高扩展规则知识编译算法的编译质量。为此,设计了约简EPCCL理论相邻子句的算法(reducing adjacent clauses in EPCCL,RACE),用于约简EPCCL理论中满足规约规则的相邻子句,进而降低了基于超扩...利用规约规则可以约简EPCCL理论的规模,从而提高扩展规则知识编译算法的编译质量。为此,设计了约简EPCCL理论相邻子句的算法(reducing adjacent clauses in EPCCL,RACE),用于约简EPCCL理论中满足规约规则的相邻子句,进而降低了基于超扩展规则的求差知识编译算法(computing the difference set for knowledge compilation based on hyper extension rule,DKCHER)的中间结果EPCCL理论和最终结果EPCCL理论的规模。结合RACE算法和DKCHER算法,设计并实现了改进的DKCHER算法(improved DKCHER,imp-DKCHER)。实验结果表明:imp-DKCHER算法能够显著提高DKCHER算法的编译质量,平均可提高17.3%,并在大部分实例上能够提高DKCHER算法的编译效率。展开更多
针对现有图像数据集存在的隐私保护需求,提出一种图像数据集隐私保护场景及该场景下隐私保护的图像替代数据生成方法。该场景利用经隐私保护方法处理后的替代图像数据集取代原始图像数据集,其中替代图像与原始图像一一对应,人类无法识...针对现有图像数据集存在的隐私保护需求,提出一种图像数据集隐私保护场景及该场景下隐私保护的图像替代数据生成方法。该场景利用经隐私保护方法处理后的替代图像数据集取代原始图像数据集,其中替代图像与原始图像一一对应,人类无法识别替代图像所属类别,替代图像可训练现有的深度学习图像分类算法,且具有较好的分类效果。同时针对上述场景,改进了基于投影梯度下降(PGD:Project Gradient Descent)攻击的数据隐私保护方法,将原始PGD攻击目标由标签改为图像,即图像对图像的攻击,并使用经过对抗训练的鲁棒模型进行图像对图像攻击作为替代数据的生成方法。在标准测试集上,替代后的CIFAR(Canadian Institute For Advanced Research 10)数据集和CINIC数据集在图像分类任务上分别取得了87.15%和74.04%的测试正确率。实验结果表明,该方法能在保证替代数据集对人类隐私性的前提下,生成原始数据集的替代数据集,并保证现有方法在该数据集上的分类性能。展开更多
文摘海量图像以流数据的形式实时涌入网络,使得在线图像检索需求越来越迫切。为了保证在线图像检索性能,研究人员利用在线哈希算法实时更新哈希函数,并重新学习新、旧数据集的哈希码。然而,随着旧数据集的日益积累,在线更新旧数据集的哈希码会严重影响在线检索效率。为此,提出非对称深度在线哈希(asymmetric deep online Hashing,ADOH),以非对称的方式深度学习在线哈希网络,并且仅生成新数据集的哈希码,无须更新旧数据集的哈希码,能够有效地提升在线检索效率。ADOH算法通过最小化哈希码内积与相似度矩阵之间的差异,保持样本对之间的语义相似性关系。另外,ADOH算法建立分类损失项和标签嵌入模块学习样本的语义信息,使生成的哈希码更具备语义鉴别性。在3个广泛使用的数据集cifar-10、mnist和Places205上设置在线近邻检索对比实验,结果表明ADOH算法的在线近邻检索性能优于目前8种较先进的在线哈希算法。
文摘利用规约规则可以约简EPCCL理论的规模,从而提高扩展规则知识编译算法的编译质量。为此,设计了约简EPCCL理论相邻子句的算法(reducing adjacent clauses in EPCCL,RACE),用于约简EPCCL理论中满足规约规则的相邻子句,进而降低了基于超扩展规则的求差知识编译算法(computing the difference set for knowledge compilation based on hyper extension rule,DKCHER)的中间结果EPCCL理论和最终结果EPCCL理论的规模。结合RACE算法和DKCHER算法,设计并实现了改进的DKCHER算法(improved DKCHER,imp-DKCHER)。实验结果表明:imp-DKCHER算法能够显著提高DKCHER算法的编译质量,平均可提高17.3%,并在大部分实例上能够提高DKCHER算法的编译效率。
文摘针对现有图像数据集存在的隐私保护需求,提出一种图像数据集隐私保护场景及该场景下隐私保护的图像替代数据生成方法。该场景利用经隐私保护方法处理后的替代图像数据集取代原始图像数据集,其中替代图像与原始图像一一对应,人类无法识别替代图像所属类别,替代图像可训练现有的深度学习图像分类算法,且具有较好的分类效果。同时针对上述场景,改进了基于投影梯度下降(PGD:Project Gradient Descent)攻击的数据隐私保护方法,将原始PGD攻击目标由标签改为图像,即图像对图像的攻击,并使用经过对抗训练的鲁棒模型进行图像对图像攻击作为替代数据的生成方法。在标准测试集上,替代后的CIFAR(Canadian Institute For Advanced Research 10)数据集和CINIC数据集在图像分类任务上分别取得了87.15%和74.04%的测试正确率。实验结果表明,该方法能在保证替代数据集对人类隐私性的前提下,生成原始数据集的替代数据集,并保证现有方法在该数据集上的分类性能。