随着大语言模型(LLM)的快速发展,基于LLM的对话助手逐渐成为学生学习的新方式。通过学生的问答互动,对话助手能生成相应的解答,从而帮助学生解决问题,并提高学习效率。然而,现有的对话助手忽略了学生的个性化需求,无法为学生提供个性化...随着大语言模型(LLM)的快速发展,基于LLM的对话助手逐渐成为学生学习的新方式。通过学生的问答互动,对话助手能生成相应的解答,从而帮助学生解决问题,并提高学习效率。然而,现有的对话助手忽略了学生的个性化需求,无法为学生提供个性化的回答,实现“因材施教”。因此,提出一种基于学生能力感知的个性化对话助手框架。该框架包括2个主要模块:学生能力感知模块和个性化回答生成模块。能力感知模块通过分析学生的答题记录来挖掘学生的知识掌握程度,回答生成模块则根据学生的能力生成个性化回答。基于此框架,设计基于指令、基于小模型驱动和基于智能体Agent的3种实现范式,以深入探讨框架的实际效果。基于指令的对话助手利用LLM的推理能力,从学生的答题记录中挖掘知识掌握程度以帮助生成个性化回答;基于小模型驱动的对话助手利用深度知识追踪(DKT)模型生成学生的知识掌握程度;基于Agent的个性化对话助手采用LLM Agent的方式整合学生能力感知、个性化检测、答案修正等工具辅助答案的生成。基于ChatGLM(Chat General Language Model)、GPT4o_mini的对比实验结果表明,应用3种范式的LLM均能为学生提供个性化的回答,其中基于Agent的范式的准确度更高,表明该范式能更好地感知学生能力,并生成个性化回答。展开更多
Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that...Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits,which are closely related to the core symptoms of ASD.Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities.Therefore,this study explores the behavior of children with ASD in capturing attention to changes in topological properties.Methods Our study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing(TD)age-matched controls.In an attention capture task,we recorded the saccadic behaviors of children with ASD and TD in response to topological change(TC)and non-topological change(nTC)stimuli.Saccadic reaction time(SRT),visual search time(VS),and first fixation dwell time(FFDT)were used as indicators of attentional bias.Pearson correlation tests between the clinical assessment scales and attentional bias were conducted.Results This study found that TD children had significantly faster SRT(P<0.05)and VS(P<0.05)for the TC stimuli compared to the nTC stimuli,while the children with ASD did not exhibit significant differences in either measure(P>0.05).Additionally,ASD children demonstrated significantly less attention towards the TC targets(measured by FFDT),in comparison to TD children(P<0.05).Furthermore,ASD children exhibited a significant negative linear correlation between their attentional bias(measured by VS)and their scores on the compulsive subscale(P<0.05).Conclusion The results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection.This atypical attention may affect the child’s cognitive and behavioral development,thereby impacting their social communication and interaction.In sum,our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.展开更多
文摘随着大语言模型(LLM)的快速发展,基于LLM的对话助手逐渐成为学生学习的新方式。通过学生的问答互动,对话助手能生成相应的解答,从而帮助学生解决问题,并提高学习效率。然而,现有的对话助手忽略了学生的个性化需求,无法为学生提供个性化的回答,实现“因材施教”。因此,提出一种基于学生能力感知的个性化对话助手框架。该框架包括2个主要模块:学生能力感知模块和个性化回答生成模块。能力感知模块通过分析学生的答题记录来挖掘学生的知识掌握程度,回答生成模块则根据学生的能力生成个性化回答。基于此框架,设计基于指令、基于小模型驱动和基于智能体Agent的3种实现范式,以深入探讨框架的实际效果。基于指令的对话助手利用LLM的推理能力,从学生的答题记录中挖掘知识掌握程度以帮助生成个性化回答;基于小模型驱动的对话助手利用深度知识追踪(DKT)模型生成学生的知识掌握程度;基于Agent的个性化对话助手采用LLM Agent的方式整合学生能力感知、个性化检测、答案修正等工具辅助答案的生成。基于ChatGLM(Chat General Language Model)、GPT4o_mini的对比实验结果表明,应用3种范式的LLM均能为学生提供个性化的回答,其中基于Agent的范式的准确度更高,表明该范式能更好地感知学生能力,并生成个性化回答。
文摘Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits,which are closely related to the core symptoms of ASD.Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities.Therefore,this study explores the behavior of children with ASD in capturing attention to changes in topological properties.Methods Our study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing(TD)age-matched controls.In an attention capture task,we recorded the saccadic behaviors of children with ASD and TD in response to topological change(TC)and non-topological change(nTC)stimuli.Saccadic reaction time(SRT),visual search time(VS),and first fixation dwell time(FFDT)were used as indicators of attentional bias.Pearson correlation tests between the clinical assessment scales and attentional bias were conducted.Results This study found that TD children had significantly faster SRT(P<0.05)and VS(P<0.05)for the TC stimuli compared to the nTC stimuli,while the children with ASD did not exhibit significant differences in either measure(P>0.05).Additionally,ASD children demonstrated significantly less attention towards the TC targets(measured by FFDT),in comparison to TD children(P<0.05).Furthermore,ASD children exhibited a significant negative linear correlation between their attentional bias(measured by VS)and their scores on the compulsive subscale(P<0.05).Conclusion The results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection.This atypical attention may affect the child’s cognitive and behavioral development,thereby impacting their social communication and interaction.In sum,our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.