期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于声振特征融合和改进级联森林的离心泵故障诊断 被引量:1
1
作者 厉强国 陈品 陈剑 《组合机床与自动化加工技术》 北大核心 2025年第2期217-221,共5页
针对故障诊断中单一来源信号特征信息表征不充分以及深度神经网络调参复杂、构建难度大等问题,提出了一种基于声振特征融合和改进级联森林的离心泵故障诊断方法。首先,对多个传感器采集的声振信号进行小波包去噪,提取降噪信号的时域特... 针对故障诊断中单一来源信号特征信息表征不充分以及深度神经网络调参复杂、构建难度大等问题,提出了一种基于声振特征融合和改进级联森林的离心泵故障诊断方法。首先,对多个传感器采集的声振信号进行小波包去噪,提取降噪信号的时域特征、频域特征和小波包能量特征。利用核主成分分析(kernel principal component analysis,KPCA)对声振信号特征进行特征融合与数据降维,得到特征矩阵。在深度级联森林的基础上引入极端随机森林构建级联层,并添加XGBoost预测器提升模型性能,得到改进级联森林模型。利用改进的级联森林模型进行故障分类,试验结果表明,该方法能够有效识别离心泵的故障类型,并且声振信号特征融合相比于单源信号特征能够有效提升诊断精度。 展开更多
关键词 离心泵 故障诊断 特征提取 声振融合 改进级联森林
在线阅读 下载PDF
基于改进二进制粒子群算法优化DBN的轴承故障诊断 被引量:3
2
作者 陈剑 黄志 +2 位作者 徐庭亮 孙太华 李雪原 《组合机床与自动化加工技术》 北大核心 2024年第1期168-173,共6页
针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN... 针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN的轴承故障诊断方法。提出用加权惯性权重改进BPSO迭代过程中的固定权重,再用改进BPSO优化DBN的隐含层神经元个数和学习率。该方法先对信号进行LMD,提取出各PF分量的散布熵和时域指标,并构建特征矩阵,然后把特征矩阵输入改进BPSO-DBN模型中训练,实现滚动轴承故障诊断和分类。采用试验轴承数据做验证并与其他诊断方法对比,结果表明,基于LMD和BPSO-DBN的滚动轴承故障诊断方法具有较好的故障识别率。 展开更多
关键词 局部均值分解 二进制粒子群优化算法 深度置信网络 滚动轴承故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部