期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于聚类关联规则的缺失数据处理研究 被引量:32
1
作者 方匡南 谢邦昌 《统计研究》 CSSCI 北大核心 2011年第2期87-92,共6页
本文提出了基于聚类和关联规则的缺失数据处理新方法,通过聚类方法将含有缺失数据的数据集相近的记录归到一类,然后利用改进后的关联规则方法对各子数据集挖掘变量间的关联性,并利用这种关联性来填补缺失数据。通过实例分析,发现该方法... 本文提出了基于聚类和关联规则的缺失数据处理新方法,通过聚类方法将含有缺失数据的数据集相近的记录归到一类,然后利用改进后的关联规则方法对各子数据集挖掘变量间的关联性,并利用这种关联性来填补缺失数据。通过实例分析,发现该方法对缺失数据处理,尤其是对在先验辅助信息缺失情况下的海量数据集具有较好的效果。 展开更多
关键词 聚类 关联规则 缺失数据 插补
在线阅读 下载PDF
L_1和L_2规则化趋势滤波的稳健集成方法 被引量:2
2
作者 秦磊 谢邦昌 《统计研究》 CSSCI 北大核心 2013年第11期99-102,共4页
Huber损失函数是稳健回归中的经典方法,Berhu罚函数是L1和L2罚函数的集成。为了从异常值较多的时间序列中提取趋势项,本文结合Huber损失函数和Berhu罚函数,提出一种L1和L2规则化趋势滤波的稳健集成方法,该方法对异常值的干扰不敏感,同... Huber损失函数是稳健回归中的经典方法,Berhu罚函数是L1和L2罚函数的集成。为了从异常值较多的时间序列中提取趋势项,本文结合Huber损失函数和Berhu罚函数,提出一种L1和L2规则化趋势滤波的稳健集成方法,该方法对异常值的干扰不敏感,同时吸收了L1和L2罚函数的优点。模拟数据的分析显示,当时间序列存在异常值,而且内在趋势情况未知时,稳健集成方法是一种很好的折中,可以给出较好的估计结果。 展开更多
关键词 L1和L2规则化趋势滤波 Huber损失函数 Berhu罚函数 稳健集成
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部