期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
人脸识别反欺诈研究进展 被引量:10
1
作者 张帆 赵世坤 +3 位作者 袁操 陈伟 刘小丽 赵涵捷 《软件学报》 EI CSCD 北大核心 2022年第7期2411-2446,共36页
当前,人脸识别理论和技术取得了巨大的成功,被广泛应用于政府、金融和军事等关键领域.与其他信息系统类似,人脸识别系统也面临着各类安全问题,其中,人脸欺诈(face spoofing,FS)是最主要的安全问题之一.所谓的人脸欺诈,是指攻击者采用打... 当前,人脸识别理论和技术取得了巨大的成功,被广泛应用于政府、金融和军事等关键领域.与其他信息系统类似,人脸识别系统也面临着各类安全问题,其中,人脸欺诈(face spoofing,FS)是最主要的安全问题之一.所谓的人脸欺诈,是指攻击者采用打印照片、视频回放和3D面具等攻击方式,诱骗人脸识别系统做出错误判断,因而是人脸识别系统所必须解决的关键问题.对人脸反欺诈(face anti-spoofing,FAS)的最新进展进行研究:首先,概述了FAS的基本概念;其次,介绍了当前FAS所面临的主要科学问题以及主要的解决方法及其优缺点;在此基础上,将已有的FAS工作分为传统方法和深度学习方法两大类,并分别进行详细论述;接着,针对基于深度学习的FAS域泛化和可解释性问题,从理论和实践的角度进行说明;然后,介绍了FAS研究所使用的典型数据集及其特点,并给出了FAS算法的评估标准和实验对比结果;最后,总结了FAS未来的研究方向并对发展趋势进行展望. 展开更多
关键词 人脸反欺诈 呈现攻击检测 人脸识别安全 深度学习 域泛化 可解释性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部