期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
电力储能用磷酸锰铁锂锂离子电池的性能 被引量:1
1
作者 郑建明 《电池》 北大核心 2025年第1期92-98,共7页
磷酸锰铁锂(LiMn_(x)Fe_(1-x)PO_(4))相比磷酸铁锂(LiFePO_(4)),具有更高的电压平台和能量密度,但在储能应用场景的研究还不够充分。研究LiMn_(x)Fe_(1-x)PO_(4)(x=0.4、0.5和0.6)与LiFePO_(4)正极材料在电力储能应用场景下的性能差异... 磷酸锰铁锂(LiMn_(x)Fe_(1-x)PO_(4))相比磷酸铁锂(LiFePO_(4)),具有更高的电压平台和能量密度,但在储能应用场景的研究还不够充分。研究LiMn_(x)Fe_(1-x)PO_(4)(x=0.4、0.5和0.6)与LiFePO_(4)正极材料在电力储能应用场景下的性能差异。随着Mn比例的增加,LiMn_(x)Fe_(1-x)PO_(4)电池的内阻增大,倍率充电性能降低,放电容量降低。在0.50 P恒功率模式下,相比LiFePO_(4)(2.50~3.65 V),LiMn0.4Fe0.6PO_(4)(2.50~4.30 V)的容量损失可达到17.8%。x=0.4、0.5和0.6时,LiMn_(x)Fe_(1-x)PO_(4)的能量效率分别为95.3%、95.1%和94.8%,低于LiFePO_(4)的96.2%。在45℃、1.00 P的条件下,经过950次循环后,LiMn_(0.6)Fe_(0.4)PO_(4)电池容量保持率较LiFePO_(4)降低约1.7个百分点。电池拆解分析表明,Fe/Mn元素溶解沉积到石墨负极,加速活性Li+的消耗。 展开更多
关键词 锂离子电池 正极材料 磷酸锰铁锂(LiMn_(x)Fe_(1-x)PO_(4)) 锰铁比 储能电池 电力储能 恒功率
在线阅读 下载PDF
磷酸铁锂储能电池不同温度循环容量衰减研究
2
作者 郑建明 《电源技术》 北大核心 2025年第1期139-146,共8页
以石墨||磷酸铁锂软包电池为研究对象,对其进行25、45、60、70和80℃下充放电循环测试,计算电池循环容量衰减速率数据。利用Arrhenius公式,推导计算不同温度下铁锂电池活化能。采用微分容量(dQ/dV)曲线做容量损失分析;结合扫描电子显微... 以石墨||磷酸铁锂软包电池为研究对象,对其进行25、45、60、70和80℃下充放电循环测试,计算电池循环容量衰减速率数据。利用Arrhenius公式,推导计算不同温度下铁锂电池活化能。采用微分容量(dQ/dV)曲线做容量损失分析;结合扫描电子显微镜(SEM)、电感耦合等离子体光谱分析(ICP)、X射线衍射(XRD)等表征数据,结果表明,当温度超过60℃进行循环测试时,石墨负极界面SEI膜生长加速、正负极活性材料微观结构破裂、过渡金属离子出现溶出/沉淀现象,导致电池性能恶化,容量加速衰减。 展开更多
关键词 电化学储能 磷酸铁锂 循环容量衰减 加速老化 寿命预测
在线阅读 下载PDF
Enhancing Cycle Life of Graphite‖LiFePO_(4)Batteries via Copper Substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)Cathode Prelithiation Additive
3
作者 Jian-Ming Zheng Jing-Wen Zhang Tian-Peng Jiao 《电化学(中英文)》 北大核心 2025年第2期17-27,共11页
Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)Ni... Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs. 展开更多
关键词 Li_(2)Ni_(1-x)Cu_(x)O_(2) Cathode prelithiation additive LiFePO_(4)battery Cycle life Grid energy storage
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部