随着互联网上Mashup服务数量及种类的急剧增长,如何从这些海量的服务集合中快速、精准地发现满足用户需求的Mashup服务,成为一个具有挑战性的问题.针对这一问题,本文提出一种融合功能语义关联计算与密度峰值检测的Mashup服务聚类方法,...随着互联网上Mashup服务数量及种类的急剧增长,如何从这些海量的服务集合中快速、精准地发现满足用户需求的Mashup服务,成为一个具有挑战性的问题.针对这一问题,本文提出一种融合功能语义关联计算与密度峰值检测的Mashup服务聚类方法,用于缩小服务的搜索空间,提升服务发现的精度与效率.首先,该方法对Mashup服务进行元信息提取和描述文本内容整理,并根据Web API组合的标签对相应Mashup服务标签进行扩充.然后,用基于功能语义关联计算方法(Functional Semantic Association Calculation Method,FSAC)提取出各服务描述的功能名词集合,并通过功能名词的语义权重来构造Mashup语义特征向量.最后,通过基于密度信息的聚类中心检测方法(Clustering Center Detection Method based on Density Information,CCD-DI)检测出最为合适的K个Mashup语义特征向量作为K-means算法的初始中心,进行聚类划分.基于ProgrammableWeb的真实数据实验表明,本文所提聚类方法在纯度、精准率、召回率、熵等指标上均有良好表现.展开更多
传统脑网络的情绪分类将聚类系数、平均最短路径等拓扑属性作为分类特征。针对这些属性易受网络连接阈值和特征选择的影响,难以完全表征不同情绪状态下的网络空间拓扑结构差异的问题,提出了一种基于脑网络和共空间模式的脑电情绪识别方...传统脑网络的情绪分类将聚类系数、平均最短路径等拓扑属性作为分类特征。针对这些属性易受网络连接阈值和特征选择的影响,难以完全表征不同情绪状态下的网络空间拓扑结构差异的问题,提出了一种基于脑网络和共空间模式的脑电情绪识别方法(EEG emotion classification based on common spatial patterns of brain networks topology,EEC-CSP-BNT)。该算法基于互信息在各个子频段内计算电极间的功能连接矩阵,同时利用共空间模式(common spatial pattern,CSP)分析学习空间滤波器,构建分类特征,最后通过分类器(如Fisher线性判别、支持向量机、K最近邻)实现基于脑电的情绪分类。基于DEAP和SEED数据集的实验结果表明,相比于脑网络拓扑属性,EEC-CSP-BNT能有效提取脑网络拓扑结构的分类信息,提高脑电情绪识别性能。展开更多
动态环境的实时碰撞规避是移动机器人轨迹规划中的一个巨大挑战。针对可变障碍物数量的环境,提出了基于LSTM(Long Short Term Memory)和DRL(Deep Reinforcement Learning)的实时轨迹规划算法Crit-LSTM-DRL。首先,根据机器人和障碍物的状...动态环境的实时碰撞规避是移动机器人轨迹规划中的一个巨大挑战。针对可变障碍物数量的环境,提出了基于LSTM(Long Short Term Memory)和DRL(Deep Reinforcement Learning)的实时轨迹规划算法Crit-LSTM-DRL。首先,根据机器人和障碍物的状态,预测碰撞可能发生的时间,计算各个障碍物相对于机器人的碰撞危急程度(Collision Criticality);其次,将障碍物根据碰撞危急程度由低到高排序,然后由LSTM模型提取固定维度的环境表征向量;最后,将机器人状态和该环境表征向量作为DRL的输入,计算对应状态的价值。在任何一个时刻,针对每一个动作,通过LSTM和DRL计算下一时刻对应的状态的价值,从而计算当前状态的最大价值以及对应的动作。针对不同环境,训练获得3个模型,即在5个障碍物的环境里训练的模型、在10个障碍物的环境里训练的模型和在可变障碍物数量(1~10)的环境里训练的模型,分析了它们在不同测试环境中的性能。为进一步分析单个障碍物和机器人之间的交互影响,将障碍物表示为障碍物和机器人的联合状态(Joint State),分析了在上述3个训练环境下获得的模型的性能。实验结果验证了Crit-LSTM-DRL的有效性。展开更多
文摘随着互联网上Mashup服务数量及种类的急剧增长,如何从这些海量的服务集合中快速、精准地发现满足用户需求的Mashup服务,成为一个具有挑战性的问题.针对这一问题,本文提出一种融合功能语义关联计算与密度峰值检测的Mashup服务聚类方法,用于缩小服务的搜索空间,提升服务发现的精度与效率.首先,该方法对Mashup服务进行元信息提取和描述文本内容整理,并根据Web API组合的标签对相应Mashup服务标签进行扩充.然后,用基于功能语义关联计算方法(Functional Semantic Association Calculation Method,FSAC)提取出各服务描述的功能名词集合,并通过功能名词的语义权重来构造Mashup语义特征向量.最后,通过基于密度信息的聚类中心检测方法(Clustering Center Detection Method based on Density Information,CCD-DI)检测出最为合适的K个Mashup语义特征向量作为K-means算法的初始中心,进行聚类划分.基于ProgrammableWeb的真实数据实验表明,本文所提聚类方法在纯度、精准率、召回率、熵等指标上均有良好表现.
文摘传统脑网络的情绪分类将聚类系数、平均最短路径等拓扑属性作为分类特征。针对这些属性易受网络连接阈值和特征选择的影响,难以完全表征不同情绪状态下的网络空间拓扑结构差异的问题,提出了一种基于脑网络和共空间模式的脑电情绪识别方法(EEG emotion classification based on common spatial patterns of brain networks topology,EEC-CSP-BNT)。该算法基于互信息在各个子频段内计算电极间的功能连接矩阵,同时利用共空间模式(common spatial pattern,CSP)分析学习空间滤波器,构建分类特征,最后通过分类器(如Fisher线性判别、支持向量机、K最近邻)实现基于脑电的情绪分类。基于DEAP和SEED数据集的实验结果表明,相比于脑网络拓扑属性,EEC-CSP-BNT能有效提取脑网络拓扑结构的分类信息,提高脑电情绪识别性能。
文摘动态环境的实时碰撞规避是移动机器人轨迹规划中的一个巨大挑战。针对可变障碍物数量的环境,提出了基于LSTM(Long Short Term Memory)和DRL(Deep Reinforcement Learning)的实时轨迹规划算法Crit-LSTM-DRL。首先,根据机器人和障碍物的状态,预测碰撞可能发生的时间,计算各个障碍物相对于机器人的碰撞危急程度(Collision Criticality);其次,将障碍物根据碰撞危急程度由低到高排序,然后由LSTM模型提取固定维度的环境表征向量;最后,将机器人状态和该环境表征向量作为DRL的输入,计算对应状态的价值。在任何一个时刻,针对每一个动作,通过LSTM和DRL计算下一时刻对应的状态的价值,从而计算当前状态的最大价值以及对应的动作。针对不同环境,训练获得3个模型,即在5个障碍物的环境里训练的模型、在10个障碍物的环境里训练的模型和在可变障碍物数量(1~10)的环境里训练的模型,分析了它们在不同测试环境中的性能。为进一步分析单个障碍物和机器人之间的交互影响,将障碍物表示为障碍物和机器人的联合状态(Joint State),分析了在上述3个训练环境下获得的模型的性能。实验结果验证了Crit-LSTM-DRL的有效性。