期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进CNN-GAP-SVM的船舶电力变换器快速故障诊断方法 被引量:10
1
作者 宫文峰 陈辉 +2 位作者 WANG Danwei 张泽辉 高海波 《计算机集成制造系统》 EI CSCD 北大核心 2022年第5期1370-1384,共15页
近年来,基于深度学习技术的智能故障诊断方法在电力变换器领域得到了广泛研究。卷积神经网络(CNN)因其强大的特征提取能力而具备辨识早期微小故障的潜力。然而,现行的CNN算法因其模型结构过于复杂、训练参数量较多、诊断时间较长而不适... 近年来,基于深度学习技术的智能故障诊断方法在电力变换器领域得到了广泛研究。卷积神经网络(CNN)因其强大的特征提取能力而具备辨识早期微小故障的潜力。然而,现行的CNN算法因其模型结构过于复杂、训练参数量较多、诊断时间较长而不适用于电气故障的快速诊断。为此,提出了一种基于改进CNN-GAP-SVM的深度学习新算法,用于DC-DC变换器早期故障的快速诊断。首先,将原始的时间序列监测数据转变为二维特征图故障样本;其次,该方法设计了一个全局均值池化(GAP)层,用于代替传统CNN中2~3层的全连接层部分,以减少模型参数量;然后,采用非线性支持向量机(SVM)代替传统Softmax函数作为最终分类器,进一步提升诊断精度。实验表明:所提方法不仅将诊断准确率提升至100%,还提升了23%的诊断速度。通过与传统智能诊断方法相比较,证明了所提方法具有更快的诊断速度和更高的诊断准确率。 展开更多
关键词 智能故障诊断 卷积神经网络 支持向量机 DC-DC变换器 开路故障
在线阅读 下载PDF
基于深度学习的船舶机械微小故障快速诊断方法 被引量:8
2
作者 宫文峰 陈辉 WANG Danwei 《计算机集成制造系统》 EI CSCD 北大核心 2022年第9期2852-2864,共13页
微小故障的快速诊断是预防和减少重大显著性故障发生的关键。近年来,基于卷积神经网络(CNN)的智能诊断方法已成为船舶机械领域研究的热点。然而,现行的基于图像处理框架的2D-CNN算法在处理多传感器、多通道故障数据时存在检测时间长、... 微小故障的快速诊断是预防和减少重大显著性故障发生的关键。近年来,基于卷积神经网络(CNN)的智能诊断方法已成为船舶机械领域研究的热点。然而,现行的基于图像处理框架的2D-CNN算法在处理多传感器、多通道故障数据时存在检测时间长、数据融合效率低的不足。为此,提出一种改进的1DCNN-GAP的深度学习新算法,用于船舶旋转机械的故障快速诊断。该方法首先引入1D-CNN处理多传感器数据融合问题,然后设计了一维全局均值池化层(1D-GAP)改进全连接层结构,减少传统CNN的模型参数量和诊断时间。通过将提出的方法用于滚动轴承在1马力、2马力和3马力多种负载工况下的2通道振动传感器故障监测数据进行诊断,诊断精确率分别为99.84%、99.51%和99.33%。通过与主流的SVM、KNN、DNN和2DCNN-FC算法进行对比验证,结果表明,所提方法具备更加优越的诊断性能,更适用于多传感器监测环境下微小故障的快速诊断。 展开更多
关键词 故障诊断 一维卷积神经网络 多通道数据融合 船舶机械 滚动轴承 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部