期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MLR-DE-LSTM的大坝变形串联组合预测模型
1
作者
刘天翼
艾星星
张九丹
《中国农村水利水电》
北大核心
2025年第2期207-212,共6页
为了解决单一模型在大坝变形预测中可能带来的信息损失问题,将差分进化算法(DE)用于长短期记忆神经网络(LSTM)模型的参数优化,并结合多元线性回归(MLR)模型建立MLR-DE-LSTM串联组合模型。基于某重力坝的水平位移原型监测数据,对该模型...
为了解决单一模型在大坝变形预测中可能带来的信息损失问题,将差分进化算法(DE)用于长短期记忆神经网络(LSTM)模型的参数优化,并结合多元线性回归(MLR)模型建立MLR-DE-LSTM串联组合模型。基于某重力坝的水平位移原型监测数据,对该模型进行了验证。结果表明,DE算法可以有效提高LSTM模型的预测精度,LSTM模型可以有效挖掘MLR模型尚未完全解释的信息。相较于单一模型,组合模型在预测位移数据时具有更高的准确度和稳定性,组合模型在充分利用数据信息方面具有更大优势。研究结果为提高大坝变形预测精度提供了参考价值。
展开更多
关键词
大坝变形
差分进化算法
长短期记忆神经网络
多元线性回归
组合模型
在线阅读
下载PDF
职称材料
题名
基于MLR-DE-LSTM的大坝变形串联组合预测模型
1
作者
刘天翼
艾星星
张九丹
机构
南水北调
东
线
智能
水务
(
北京
)
有限公司
扬州大学水利科学与工程学院
中国
南水北调
集团中
线
有限公司
天津分
公司
出处
《中国农村水利水电》
北大核心
2025年第2期207-212,共6页
文摘
为了解决单一模型在大坝变形预测中可能带来的信息损失问题,将差分进化算法(DE)用于长短期记忆神经网络(LSTM)模型的参数优化,并结合多元线性回归(MLR)模型建立MLR-DE-LSTM串联组合模型。基于某重力坝的水平位移原型监测数据,对该模型进行了验证。结果表明,DE算法可以有效提高LSTM模型的预测精度,LSTM模型可以有效挖掘MLR模型尚未完全解释的信息。相较于单一模型,组合模型在预测位移数据时具有更高的准确度和稳定性,组合模型在充分利用数据信息方面具有更大优势。研究结果为提高大坝变形预测精度提供了参考价值。
关键词
大坝变形
差分进化算法
长短期记忆神经网络
多元线性回归
组合模型
Keywords
dam deformation
differential evolutionary algorithm
short-and long-term memory neural networks
multiple linear regression
combinatorial model
分类号
TV698.1 [水利工程—水利水电工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MLR-DE-LSTM的大坝变形串联组合预测模型
刘天翼
艾星星
张九丹
《中国农村水利水电》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部