期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于随机森林的直升机飞行状态识别方法 被引量:5
1
作者 王锦盛 熊邦书 +3 位作者 莫燕 黄建萍 李新民 赵平均 《计算机工程与应用》 CSCD 北大核心 2017年第17期149-152,159,共5页
针对直升机飞行状态识别训练样本数据少而导致识别率不高的问题,提出一种基于随机森林的直升机飞行状态识别方法。首先利用去野点、限幅、平滑处理对飞行数据进行预处理,并根据特征参数将飞行状态分为8个小类;然后利用随机森林识别率较... 针对直升机飞行状态识别训练样本数据少而导致识别率不高的问题,提出一种基于随机森林的直升机飞行状态识别方法。首先利用去野点、限幅、平滑处理对飞行数据进行预处理,并根据特征参数将飞行状态分为8个小类;然后利用随机森林识别率较高的特点,对每一小类进行随机森林分类器设计;最后利用训练样本训练每个随机森林分类器,并将训练好的随机森林分类器识别直升机全起落飞行状态。以某型直升机实飞数据作为实验数据,将该方法与RBF神经网络法和SVM法进行对比实验,结果表明在小样本情况下该方法识别率有明显提高,识别速度也有所提高,可为直升机寿命预测提供依据。 展开更多
关键词 随机森林 飞行状态识别 预处理 特征参数 小样本
在线阅读 下载PDF
基于GWO-CMFH和改进ResNet轴承故障诊断 被引量:3
2
作者 欧巧凤 彭泗田 +1 位作者 李新民 熊邦书 《机床与液压》 北大核心 2023年第22期215-222,共8页
针对不同程度的小分类轴承故障,现有故障诊断方法准确率不高的问题,提出基于GWO-CMFH和改进ResNet的滚动轴承故障诊断方法。对于同一类型不同程度故障,提出基于GWO自适应优化结构元素参数的CMFH滤波方法,增强振动信号的脉冲故障特征并... 针对不同程度的小分类轴承故障,现有故障诊断方法准确率不高的问题,提出基于GWO-CMFH和改进ResNet的滚动轴承故障诊断方法。对于同一类型不同程度故障,提出基于GWO自适应优化结构元素参数的CMFH滤波方法,增强振动信号的脉冲故障特征并抑制背景噪声;采用连续小波变换将滤波后的信号转换成二维时频图谱;最后,提出基于混合注意力机制改进的残差网络模型,提高轴承故障诊断精度。在西储大学、东南大学及所选轴承数据集上进行验证实验,不同故障程度的小分类诊断准确率分别达到99.73%、98.12%和99.07%,表明所提方法具有很好的抗噪性、鲁棒性,可提高滚动轴承不同故障程度的诊断效果。 展开更多
关键词 滚动轴承故障诊断 GWO CMFH 混合注意力机制 残差网络(ResNet)
在线阅读 下载PDF
基于DCAE-CNN的自动倾斜器滚动轴承故障诊断 被引量:19
3
作者 万齐杨 熊邦书 +1 位作者 李新民 孙伟 《振动与冲击》 EI CSCD 北大核心 2020年第11期273-279,共7页
针对直升机自动倾斜器滚动轴承工况复杂、噪声干扰大,造成故障诊断效果不佳的问题,提出一种基于深度卷积自编码器(Deep Convolutional AutoEncoder,DCAE)和卷积神经网络(Convolutional Neural Network,CNN)的轴承故障诊断方法。该方法... 针对直升机自动倾斜器滚动轴承工况复杂、噪声干扰大,造成故障诊断效果不佳的问题,提出一种基于深度卷积自编码器(Deep Convolutional AutoEncoder,DCAE)和卷积神经网络(Convolutional Neural Network,CNN)的轴承故障诊断方法。该方法首先采用小波变换方法构造不同状态下振动信号的时频图,然后使用DCAE对时频图进行图像去噪,最后利用CNN对去噪后的时频图进行故障分类。利用课题组和美国凯斯西储大学的滚动轴承故障数据开展诊断实验,并与CNN、堆叠降噪自编码器(Stacked Denoise AutoEncoder,SDAE)两种深度学习方法进行对比,结果表明,该方法在高噪声环境下具有更高的故障识别率。 展开更多
关键词 故障诊断 小波时频图 深度学习 自动倾斜器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部