为全面提取节点的全局特征,提高复杂网络关键节点识别结果的准确性,提出一种基于改进DDQN(double deep Q-network)算法的复杂网络关键节点识别方法。通过重构DDQN的初始奖励值、引入回退探索和优先访问方法,改进DDQN算法,提取节点全局特...为全面提取节点的全局特征,提高复杂网络关键节点识别结果的准确性,提出一种基于改进DDQN(double deep Q-network)算法的复杂网络关键节点识别方法。通过重构DDQN的初始奖励值、引入回退探索和优先访问方法,改进DDQN算法,提取节点全局特征,从而提升全局特征提取的效率和提取结果的准确性。引入聚类系数获取节点的局部特征,通过网络性能均值实验得到全局特征和局部特征的融合参数,对全局特征和局部特征进行融合,得到节点的重要度排序,从而实现关键节点识别。在7个真实网络数据集上的实验结果表明,此方法在基于网络性能均值的评价指标以及SIR模型上均优于对比的基线方法。证明其可以更全面地提取节点全局特征,更准确地识别关键节点。展开更多
红外弱小目标检测是图像处理的难点之一,许多研究人员提出了不少检测方法。针对复杂背景与强杂波干扰下图像信杂比(Signal-to-Clutter Ratio,SCR)低造成的目前检测方法易受伪目标干扰、虚警率高的问题,提出了一种多信息融合的红外弱小...红外弱小目标检测是图像处理的难点之一,许多研究人员提出了不少检测方法。针对复杂背景与强杂波干扰下图像信杂比(Signal-to-Clutter Ratio,SCR)低造成的目前检测方法易受伪目标干扰、虚警率高的问题,提出了一种多信息融合的红外弱小目标检测算法。首先,构建八向局部灰度残差信息图;其次,设计一个滑动窗口遍历整个图像,将图像分为一系列局部图像块,对局部图像块的强度均值进行约束,获得局部强度均值约束信息图;然后,将局部图像块进一步划分为12个方向块,对每个方向块中像素的梯度方向进行约束,获取梯度方向约束信息图;最后,上述3个信息图像通过点积运算得到最终显著图,并利用阈值分割实现弱小目标的分离。将该算法与3种其它不同算法从信杂比增益(Signal-to-Clutter Ratio Gain,SCRG)、背景抑制因子(Background Suppression Factor,BSF)以及检测率与虚警率的接受者操作特征(Receiver Operating Characteristic,ROC)曲线方面进行对比。实验结果表明:该算法具有更高的SCRG、BSF和ROC曲线下面积(Area Under the Curve,AUC),不仅能有效地抑制背景杂波、剔除伪目标,而且能准确地检测出红外弱小目标,具有较高的检测率。展开更多
文摘为全面提取节点的全局特征,提高复杂网络关键节点识别结果的准确性,提出一种基于改进DDQN(double deep Q-network)算法的复杂网络关键节点识别方法。通过重构DDQN的初始奖励值、引入回退探索和优先访问方法,改进DDQN算法,提取节点全局特征,从而提升全局特征提取的效率和提取结果的准确性。引入聚类系数获取节点的局部特征,通过网络性能均值实验得到全局特征和局部特征的融合参数,对全局特征和局部特征进行融合,得到节点的重要度排序,从而实现关键节点识别。在7个真实网络数据集上的实验结果表明,此方法在基于网络性能均值的评价指标以及SIR模型上均优于对比的基线方法。证明其可以更全面地提取节点全局特征,更准确地识别关键节点。
文摘红外弱小目标检测是图像处理的难点之一,许多研究人员提出了不少检测方法。针对复杂背景与强杂波干扰下图像信杂比(Signal-to-Clutter Ratio,SCR)低造成的目前检测方法易受伪目标干扰、虚警率高的问题,提出了一种多信息融合的红外弱小目标检测算法。首先,构建八向局部灰度残差信息图;其次,设计一个滑动窗口遍历整个图像,将图像分为一系列局部图像块,对局部图像块的强度均值进行约束,获得局部强度均值约束信息图;然后,将局部图像块进一步划分为12个方向块,对每个方向块中像素的梯度方向进行约束,获取梯度方向约束信息图;最后,上述3个信息图像通过点积运算得到最终显著图,并利用阈值分割实现弱小目标的分离。将该算法与3种其它不同算法从信杂比增益(Signal-to-Clutter Ratio Gain,SCRG)、背景抑制因子(Background Suppression Factor,BSF)以及检测率与虚警率的接受者操作特征(Receiver Operating Characteristic,ROC)曲线方面进行对比。实验结果表明:该算法具有更高的SCRG、BSF和ROC曲线下面积(Area Under the Curve,AUC),不仅能有效地抑制背景杂波、剔除伪目标,而且能准确地检测出红外弱小目标,具有较高的检测率。