期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于YOLOv8n改进的PCB缺陷检测算法
1
作者
喻聪
《实验室研究与探索》
北大核心
2025年第6期117-124,共8页
针对PCB生产中的漏孔、鼠咬等微小缺陷检测问题,提出一种基于YOLOv8n改进的YOLOv8n-CSOW算法。通过在Backbone中增加空间深度转换卷积模块以增强特征捕获能力;在Neck部分,采用C2f-ODconv模块替换原始C2f模块强化特征精确匹配。同时,引...
针对PCB生产中的漏孔、鼠咬等微小缺陷检测问题,提出一种基于YOLOv8n改进的YOLOv8n-CSOW算法。通过在Backbone中增加空间深度转换卷积模块以增强特征捕获能力;在Neck部分,采用C2f-ODconv模块替换原始C2f模块强化特征精确匹配。同时,引入上下文增强模块强化特征表征。将边界框(BBox)损失函数优化为动态聚焦的WIoUv2函数,增强模型对微小缺陷的敏感度。实验结果表明,改进算法在某大学公开数据集上平均检测精度较原始YOLOv8n提升1.4个百分点,且优于主流目标检测算法,具备显著的工业检测应用价值。
展开更多
关键词
印刷电路板检测
上下文增强模块
空间深度转换卷积
全维动态卷积
在线阅读
下载PDF
职称材料
题名
基于YOLOv8n改进的PCB缺陷检测算法
1
作者
喻聪
机构
南昌市卫生学校信息中心
出处
《实验室研究与探索》
北大核心
2025年第6期117-124,共8页
文摘
针对PCB生产中的漏孔、鼠咬等微小缺陷检测问题,提出一种基于YOLOv8n改进的YOLOv8n-CSOW算法。通过在Backbone中增加空间深度转换卷积模块以增强特征捕获能力;在Neck部分,采用C2f-ODconv模块替换原始C2f模块强化特征精确匹配。同时,引入上下文增强模块强化特征表征。将边界框(BBox)损失函数优化为动态聚焦的WIoUv2函数,增强模型对微小缺陷的敏感度。实验结果表明,改进算法在某大学公开数据集上平均检测精度较原始YOLOv8n提升1.4个百分点,且优于主流目标检测算法,具备显著的工业检测应用价值。
关键词
印刷电路板检测
上下文增强模块
空间深度转换卷积
全维动态卷积
Keywords
printed circuit board inspection
context enhancement module
spatial depth conversion convolution
omni-dimensional dynamic convolution
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于YOLOv8n改进的PCB缺陷检测算法
喻聪
《实验室研究与探索》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部