期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一类含五次非线性恢复力的Duffing系统共振与分岔特性分析 被引量:4
1
作者 彭荣荣 《应用数学和力学》 CSCD 北大核心 2019年第10期1122-1134,共13页
考虑一类含有外激力和五次非线性恢复力的Duffing系统,运用多尺度法求解得到该系统的幅频响应方程,给出不同参数变化下的幅频特性曲线及变化规律,同时利用奇异性理论得到该系统在3种情形下的转迁集及对应的拓扑结构.其次确定系统的不动... 考虑一类含有外激力和五次非线性恢复力的Duffing系统,运用多尺度法求解得到该系统的幅频响应方程,给出不同参数变化下的幅频特性曲线及变化规律,同时利用奇异性理论得到该系统在3种情形下的转迁集及对应的拓扑结构.其次确定系统的不动点,运用Hamilton函数给出该系统的异宿轨,在此基础上,利用Melnikov方法得到该系统在Smale马蹄意义下发生混沌的阈值.而后通过数值仿真给出了系统随外激力、五次非线性项系数变化下的动态分岔与混沌行为,发现存在周期运动、倍周期运动、拟周期运动及混沌等非线性现象.最后运用Lyapunov指数、相轨图和Poincaré截面等非线性方法对理论的正确性进行验证.上述研究结论为进一步提升对Duffing系统非线性特性及其演化规律的认识提供了一定的理论参考. 展开更多
关键词 DUFFING系统 五次非线性 分岔 混沌
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部