期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
粒子群和强化学习结合的双馈式风机系统模型参数智能辨识方法
1
作者 甄鸿越 赵利刚 +3 位作者 周保荣 赵傲 向轩辰 刁瑞盛 《电力系统及其自动化学报》 北大核心 2025年第8期106-114,共9页
准确辨识风力发电厂模型关键参数对确保电网的安全、稳定和经济运行具有重要意义。提出一种基于粒子群优化(particle swarmoptimization,PSO)和最大熵强化学习框架下的(soft actor-critic,SAC)的混合算法,旨在提高双馈式感应风力发电机... 准确辨识风力发电厂模型关键参数对确保电网的安全、稳定和经济运行具有重要意义。提出一种基于粒子群优化(particle swarmoptimization,PSO)和最大熵强化学习框架下的(soft actor-critic,SAC)的混合算法,旨在提高双馈式感应风力发电机组模型参数辨识的精度和效率。首先,使用双向摄动法对模型参数进行有功-无功灵敏度分析,识别出高灵敏度参数集;其次,使用SAC算法训练智能体模型,对模型坏参数进行初步估计;最后,结合PSO算法进一步优化参数空间,以最小化模型有功-无功动态响应与录波数据的均方误差(mean squareer⁃ror,MSE)。实验结果表明,所提SAC-PSO混合方法在参数辨识方面表现出更高的精度,MSE降低了87.84%,验证了SAC-PSO方法在提高DFIG参数辨识精度和鲁棒性方面的有效性。 展开更多
关键词 深度强化学习 双馈感应发电机 混合算法 参数辨识 粒子群优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部