The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an addi...The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries.展开更多
文章通过化学镀法成功制备了Ni-P催化剂,并考察了施镀温度以及还原剂浓度对硼氢化钠水解制氢性能的影响。结果表明:试验中Ni-P催化剂的最优制备条件为施镀温度为50℃,还原剂浓度为0.8 mol/L;此条件下制备的Ni-P催化剂催化硼氢化钠水解...文章通过化学镀法成功制备了Ni-P催化剂,并考察了施镀温度以及还原剂浓度对硼氢化钠水解制氢性能的影响。结果表明:试验中Ni-P催化剂的最优制备条件为施镀温度为50℃,还原剂浓度为0.8 mol/L;此条件下制备的Ni-P催化剂催化硼氢化钠水解放氢的速率为639.7 m L/(min·g),活化能为44.5 k J/mol。展开更多
基金supported by the National Natural Science Foundation of China(22279063,52001170)Tianjin Natural Science Foundation(22JCYBJC00590)the Fundamental Research Funds for the Central Universities.We thank the Haihe Laboratoryof Sustainable Chemical Transformations for financial support.
文摘The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries.
文摘以仲钼酸铵和四氯化锡为原料,采用水热法制备了不同Sn掺杂比例的MoO_3;利用X射线衍射(XRD),扫描电子显微镜(SEM)和Brunauer-Emmett Teller(BET)测试等手段对材料进行了物相、形貌结构和孔径表征;测试了其对乙醇、二氯甲烷、甲醇、甲醛、甲酸、四氯化碳、氨气和丙酮等气体的传感性能.结果表明,Sn掺杂未改变MoO_3的结构;290℃为气体传感测试的最佳测试温度;掺杂后的MoO_3对乙醇气体的灵敏度和响应时间均优于纯相MoO_3,Sn掺杂摩尔比为5%时效果最好,500 mg/m^3测试条件下对乙醇的灵敏度为19.64,响应时间为1.1 s.
文摘文章通过化学镀法成功制备了Ni-P催化剂,并考察了施镀温度以及还原剂浓度对硼氢化钠水解制氢性能的影响。结果表明:试验中Ni-P催化剂的最优制备条件为施镀温度为50℃,还原剂浓度为0.8 mol/L;此条件下制备的Ni-P催化剂催化硼氢化钠水解放氢的速率为639.7 m L/(min·g),活化能为44.5 k J/mol。