期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于稠密残差块与通道像素注意力的图像去雾网络 被引量:5
1
作者 金炜东 张述礼 +1 位作者 唐鹏 张曼 《系统仿真学报》 CAS CSCD 北大核心 2022年第8期1663-1673,共11页
为解决复杂的室外图像进行去雾,依然会有雾气残留,甚至出现颜色失真和纹理丢失问题,提出一种基于稠密残差块与通道像素注意力的图像去雾网络,利用稠密残差块对有雾图像进行特征提取和融合,用带通道像素注意力机制的修复模块对特征图进... 为解决复杂的室外图像进行去雾,依然会有雾气残留,甚至出现颜色失真和纹理丢失问题,提出一种基于稠密残差块与通道像素注意力的图像去雾网络,利用稠密残差块对有雾图像进行特征提取和融合,用带通道像素注意力机制的修复模块对特征图进行颜色和纹理上的修复。实验结果表明:该方法在客观评价指标和主观视觉质量上都有明显提升,有效避免了去雾过程中的颜色失真、纹理丢失和雾气残留问题。 展开更多
关键词 图像去雾 稠密残差块 注意力机制 颜色失真 细节纹理
在线阅读 下载PDF
基于宽接收域的实时人体姿态估计网络 被引量:4
2
作者 苟先太 陶明江 +2 位作者 李欣 康立烨 金炜东 《计算机工程与设计》 北大核心 2023年第1期247-254,共8页
为解决人体姿态估计任务的准确率和实时性问题,提出一个卷积宽接收域、检测实时的人体姿态估计网络。构建稠密残差步进网络(dense residual steps network,DRSN),提高模型对输入图像空间信息的提取和全局特征的把握。在激活函数上,以改... 为解决人体姿态估计任务的准确率和实时性问题,提出一个卷积宽接收域、检测实时的人体姿态估计网络。构建稠密残差步进网络(dense residual steps network,DRSN),提高模型对输入图像空间信息的提取和全局特征的把握。在激活函数上,以改进的FReLU激活函数替换原始的激活函数,通过采用二维卷积的方式改变ReLU函数中的激活条件,扩大模型的接收域,关键点分类更加准确。该网络在标准MPII数据集上进行测试,在满足较高定位精度的条件下,模型在NVIDIA RTX 2080Ti GPU上的检测速度达到38 FPS,可有效解决检测实时性问题。 展开更多
关键词 姿态估计 FReLU激活函数 宽接收域 稠密残差步进网络 二维卷积激活
在线阅读 下载PDF
基于改进宽残差结构的接触网吊弦状态辨识分类网络
3
作者 金炜东 张志军 唐鹏 《铁道学报》 EI CAS CSCD 北大核心 2022年第10期40-45,共6页
铁路接触网系统中吊弦的工作状态对机车运行至关重要。视频图像的接触网吊弦状态快速准确识别备受关注,因吊弦图像数据的特殊性导致现有网络模型识别精度较低。本文针对吊弦数据特征设计分类网络结构,提出适应接触网吊弦状态识别的VRNe... 铁路接触网系统中吊弦的工作状态对机车运行至关重要。视频图像的接触网吊弦状态快速准确识别备受关注,因吊弦图像数据的特殊性导致现有网络模型识别精度较低。本文针对吊弦数据特征设计分类网络结构,提出适应接触网吊弦状态识别的VRNet分类网络。VRNet的核心为嵌入了注意力机制的宽残差结构,将此结构作为特征提取模块取代VGG-16中的一般卷积,改变其单一的平原结构。并使用Ghost机制替换宽残差结构中的普通卷积,大幅降低了模型的参数量和运算量。VRNet分类网络在吊弦故障分类实验中精度达到97%,优于其他分类网络,并在相关应用研究中表现出优良性能。 展开更多
关键词 吊弦 注意力机制 宽残差结构 VGG-16 Ghost机制
在线阅读 下载PDF
融合自监督学习的单帧图像运动视差关键点估计 被引量:4
4
作者 霍志浩 金炜东 唐鹏 《系统仿真学报》 CAS CSCD 北大核心 2021年第11期2753-2759,共7页
运动视差的关键点(Focus of Expansion,FOE)是铁路接触网视频巡检的重要参数,但当前计算FOE的方法需多帧图像匹配估计,时间复杂度高。针对单帧图像FOE估计问题,结合自监督学习思想,提出了一种融合自监督学习的单帧图像FOE估计算法。搭... 运动视差的关键点(Focus of Expansion,FOE)是铁路接触网视频巡检的重要参数,但当前计算FOE的方法需多帧图像匹配估计,时间复杂度高。针对单帧图像FOE估计问题,结合自监督学习思想,提出了一种融合自监督学习的单帧图像FOE估计算法。搭建了全卷积网络F-VGG(Fully-VisualGeometryGroup)作为FOE的预测器,通过融合代理任务自动生成样本数据的训练标签,实现了端到端的单帧图像FOE估计。实验结果表明:该方法在FOE预测精度上平均提升13.45%,检测速度提升56.27%,适于实时应用。 展开更多
关键词 自监督学习 运动视差 全卷积网络 FOE(Focus of Expansion)
在线阅读 下载PDF
基于SWIPT的D2D通信辅助移动边缘计算任务卸载策略 被引量:3
5
作者 杜利俊 李陶深 +1 位作者 黄翊芯 漆治君 《广西科学》 CAS 北大核心 2023年第4期754-763,共10页
为解决5G移动通信系统中移动用户计算能力不足、能量消耗多、无线资源缺乏等问题,本文构建一种基于无线携能通信(Simultaneous Wireless Information and Power Transfer, SWIPT)的多用户设备间(Device to Device, D2D)通信辅助移动边... 为解决5G移动通信系统中移动用户计算能力不足、能量消耗多、无线资源缺乏等问题,本文构建一种基于无线携能通信(Simultaneous Wireless Information and Power Transfer, SWIPT)的多用户设备间(Device to Device, D2D)通信辅助移动边缘计算(Mobile Edge Computation, MEC)系统模型,提出一种D2D-MEC联合卸载策略。该策略以系统中请求用户总能耗最小化为目标,采用二进制卸载模式和功率分流模式对请求用户进行任务卸载和能量收集。针对能耗最小化问题为非线性混合整数规划问题,根据整数变量和实数变量将原问题解耦为功率分配和计算任务卸载两个独立子问题,并分别采用Dinkelbach方法和匈牙利算法求出两个子问题的最优解。仿真实验结果表明,本文所提策略优于传统的D2D卸载策略和MEC卸载策略,有效降低了请求用户的总能耗,提高了任务执行效率。 展开更多
关键词 无线携能通信 移动边缘计算 设备间通信 任务卸载 功率分配
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部