Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity ar...Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity are also tunable,increasing its functional versatility.These make diamond and its related materials,such as its composites,highly promising for various applications in energy fields.This review summarizes recent advances and key achievements in energy storage and conversion,covering electrochemical energy storage(e.g.,batteries and supercapacitors),electrocatalytic energy conversion(e.g.,CO_(2)and nitrogen reduction reactions),and solar energy conversion(e.g.,photo-(electro)chemical CO_(2)and nitrogen reduction reactions,and solar cells).Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed.展开更多
Abstract:Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease...Abstract:Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of operation.However,the low adsorption capacity of the reported adsorbents is still a challenge for wastewater treatment with highefficiency.Here,we developed a super adsorbent(SUA-1),which was a kind of porous carbon nanofibers derived from a composite of PAN-based electrospinning and ZIF-8(PAN/ZIF-8)via simple heat treatment process.The asprepared SUA showed an ultra-high adsorption capacity for adsorbing methyl blue(MB)at nearly three times its own weight,as high as 2998.18 mg/g.A series tests demonstrated that the pore-making effect of ZIF-8 during heat treatment process endowed high BET surface area and generated ZnO components as chemical adsorption center.Under the synergistic effect of bonding and non-bonding forces including ionic bond,electrostatic interaction,andπ-πinteraction,the adsorption capacity has been greatly improved.In view of promising efficiency,this work provides guidance and insights for the preparation of highly efficient adsorbents based on electrospinning derived porous carbon nanofibers.展开更多
Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This re...Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This review summarizes recent advances in CD-based materials for advanced batteries.Methods for the preparation of CDs are first introduced,focusing on the feasibility of large-scale synthesis,and four critical uses of CDs are analyzed:electrolyte solutions,metal electrode coatings,electrode materials,and solid-state batteries.We then consider how CDs suppress dendrite formation,decrease volume expansion,accelerate charge transfer,and improve ion migration.Finally,existing problems are discussed,including the industrial production of CDs,their role as additives in the evolution of electrode interfaces,and strategies for giving them multifunctionality.展开更多
Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)are two typical titanate-based sodium-storage materials,featuring the high theoretical capacity and favorable structure stability,respectively.Regulating the ratio of them in the...Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)are two typical titanate-based sodium-storage materials,featuring the high theoretical capacity and favorable structure stability,respectively.Regulating the ratio of them in the composite material is the key to strengthen its electrochemical characteristics.Herein,based on the high specific surface area and abundant surface functional groups of carbon dots(CDs),sodium titanate precursors containing CDs were in situ prepared by one-step hydrothermal method.After the thermal conversion of the precursors,a composite material(NNTO/C)of Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)was obtained,containing conductive carbon derived from CDs.The introduc⁃tion of conductive carbon not only adjusts the composition ratio of the mixed phases,but also provides a small charge transfer impedance(Rct,7.48Ω)and a big specific surface area(100.8 m^(2)/g).As a result,NNTO/C composites exhibit better sodium storage behavior while playing the synergistic interaction of mixed phases.When employed as the anode,after 200 cycles at 0.05 A/g,NNTO/C still maintains a specific capacity of 143.8 mA‧h/g.After 400 cycles at 1.00 A/g,the specific capacity remains as high as 108 mA‧h/g.This study suggests an innovative thinking for designing two-phase structures of electrode materials and the greater use of CDs in electrochemical energy storage.展开更多
Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether ...Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift.展开更多
A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated...A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated using X-ray diffraction(XRD),Raman spectrum,X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Solid UV reflectance spectra testing found that CdS/Fe_(3)O_(4)nanocomposites had good light absorption throughout the spectral range,promoting their photocatalytic properties.Under visible light irradiation,CdS/Fe_(3)O_(4)(2∶5)with a mass ratio of 2∶5 exhibited excellent photocatalytic perfor-mance,with a degradation rate of 98.8%for rhodamine B.Furthermore,after five cycles of photocatalytic degrada-tion reaction,the rhodamine B degradation rate remained at 96.2%,indicating that the photocatalysts have good pho-tocatalytic stability.展开更多
A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor...A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).展开更多
基金西南大学中央高校基本科研业务费项目(SWU-KT22030)重庆市教育委员会科学技术研究项目(KJQN202300205)Deutsche Forschungsgemeinschaft(DFG,German Research Foundation,457444676).
文摘Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity are also tunable,increasing its functional versatility.These make diamond and its related materials,such as its composites,highly promising for various applications in energy fields.This review summarizes recent advances and key achievements in energy storage and conversion,covering electrochemical energy storage(e.g.,batteries and supercapacitors),electrocatalytic energy conversion(e.g.,CO_(2)and nitrogen reduction reactions),and solar energy conversion(e.g.,photo-(electro)chemical CO_(2)and nitrogen reduction reactions,and solar cells).Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed.
基金Natural Science Foundation of China(22134005,22204011)Chongqing Talents Program for Outstanding Scientists(cstc2021ycjh-bgzxm0179)。
文摘Abstract:Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of operation.However,the low adsorption capacity of the reported adsorbents is still a challenge for wastewater treatment with highefficiency.Here,we developed a super adsorbent(SUA-1),which was a kind of porous carbon nanofibers derived from a composite of PAN-based electrospinning and ZIF-8(PAN/ZIF-8)via simple heat treatment process.The asprepared SUA showed an ultra-high adsorption capacity for adsorbing methyl blue(MB)at nearly three times its own weight,as high as 2998.18 mg/g.A series tests demonstrated that the pore-making effect of ZIF-8 during heat treatment process endowed high BET surface area and generated ZnO components as chemical adsorption center.Under the synergistic effect of bonding and non-bonding forces including ionic bond,electrostatic interaction,andπ-πinteraction,the adsorption capacity has been greatly improved.In view of promising efficiency,this work provides guidance and insights for the preparation of highly efficient adsorbents based on electrospinning derived porous carbon nanofibers.
文摘Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This review summarizes recent advances in CD-based materials for advanced batteries.Methods for the preparation of CDs are first introduced,focusing on the feasibility of large-scale synthesis,and four critical uses of CDs are analyzed:electrolyte solutions,metal electrode coatings,electrode materials,and solid-state batteries.We then consider how CDs suppress dendrite formation,decrease volume expansion,accelerate charge transfer,and improve ion migration.Finally,existing problems are discussed,including the industrial production of CDs,their role as additives in the evolution of electrode interfaces,and strategies for giving them multifunctionality.
文摘Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)are two typical titanate-based sodium-storage materials,featuring the high theoretical capacity and favorable structure stability,respectively.Regulating the ratio of them in the composite material is the key to strengthen its electrochemical characteristics.Herein,based on the high specific surface area and abundant surface functional groups of carbon dots(CDs),sodium titanate precursors containing CDs were in situ prepared by one-step hydrothermal method.After the thermal conversion of the precursors,a composite material(NNTO/C)of Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)was obtained,containing conductive carbon derived from CDs.The introduc⁃tion of conductive carbon not only adjusts the composition ratio of the mixed phases,but also provides a small charge transfer impedance(Rct,7.48Ω)and a big specific surface area(100.8 m^(2)/g).As a result,NNTO/C composites exhibit better sodium storage behavior while playing the synergistic interaction of mixed phases.When employed as the anode,after 200 cycles at 0.05 A/g,NNTO/C still maintains a specific capacity of 143.8 mA‧h/g.After 400 cycles at 1.00 A/g,the specific capacity remains as high as 108 mA‧h/g.This study suggests an innovative thinking for designing two-phase structures of electrode materials and the greater use of CDs in electrochemical energy storage.
基金financially supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20241181)the State Key Laboratory of AnalyticalChemistry for Life Science,School of Chemistry and Chemical Engineering,Nanjing University(Grant No.SKLACLS2419)。
文摘Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift.
文摘A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated using X-ray diffraction(XRD),Raman spectrum,X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Solid UV reflectance spectra testing found that CdS/Fe_(3)O_(4)nanocomposites had good light absorption throughout the spectral range,promoting their photocatalytic properties.Under visible light irradiation,CdS/Fe_(3)O_(4)(2∶5)with a mass ratio of 2∶5 exhibited excellent photocatalytic perfor-mance,with a degradation rate of 98.8%for rhodamine B.Furthermore,after five cycles of photocatalytic degrada-tion reaction,the rhodamine B degradation rate remained at 96.2%,indicating that the photocatalysts have good pho-tocatalytic stability.
文摘A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).