期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合DCGAN与LSTM的阿兹海默症分类算法
被引量:
1
1
作者
林颖
何啸峰
+1 位作者
陈灵娜
陈俊熹
《计算机应用研究》
CSCD
北大核心
2020年第5期1574-1577,共4页
针对传统的阿兹海默症(AD)分类3D模型参数过多以及2D模型缺乏连续性特征的问题,提出了一种结合2D卷积神经网络与长短时记忆网络的脑部核磁共振成像(MRI)图像分类算法。利用深度卷积生成对抗网络(DCGAN),卷积层能够在无标签的情况下自动...
针对传统的阿兹海默症(AD)分类3D模型参数过多以及2D模型缺乏连续性特征的问题,提出了一种结合2D卷积神经网络与长短时记忆网络的脑部核磁共振成像(MRI)图像分类算法。利用深度卷积生成对抗网络(DCGAN),卷积层能够在无标签的情况下自动提取到图像特征。首先以无监督的方式训练卷积神经网络;然后将MRI图像序列转换为特征序列,再输入到长短时记忆网络进行训练;最后结合特征序列与LSTM的隐藏状态进行分类。实验结果显示,相比3D模型,该算法有着更少的参数,对于NC与AD的分类达到了93.93%的准确率,对于NC与MCI的分类达到了86.27%的准确率。
展开更多
关键词
阿兹海默症
深度卷积生成对抗网络
长短时记忆
无监督
在线阅读
下载PDF
职称材料
题名
结合DCGAN与LSTM的阿兹海默症分类算法
被引量:
1
1
作者
林颖
何啸峰
陈灵娜
陈俊熹
机构
南华大学
计算机学院
南华大学南华附属医院
中南
大学
湘雅公共卫生学院
出处
《计算机应用研究》
CSCD
北大核心
2020年第5期1574-1577,共4页
基金
国家自然科学基金资助项目(61504055)
2018年湖南省研究生科研创新项目(2018KYY080)。
文摘
针对传统的阿兹海默症(AD)分类3D模型参数过多以及2D模型缺乏连续性特征的问题,提出了一种结合2D卷积神经网络与长短时记忆网络的脑部核磁共振成像(MRI)图像分类算法。利用深度卷积生成对抗网络(DCGAN),卷积层能够在无标签的情况下自动提取到图像特征。首先以无监督的方式训练卷积神经网络;然后将MRI图像序列转换为特征序列,再输入到长短时记忆网络进行训练;最后结合特征序列与LSTM的隐藏状态进行分类。实验结果显示,相比3D模型,该算法有着更少的参数,对于NC与AD的分类达到了93.93%的准确率,对于NC与MCI的分类达到了86.27%的准确率。
关键词
阿兹海默症
深度卷积生成对抗网络
长短时记忆
无监督
Keywords
Alzheimer’s disease(AD)
deep convolutional generative adversarial networks(DCGAN)
long short-term memory(LSTM)
unsupervised
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合DCGAN与LSTM的阿兹海默症分类算法
林颖
何啸峰
陈灵娜
陈俊熹
《计算机应用研究》
CSCD
北大核心
2020
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部