期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于GWO优化与BiLSTM-AM的配电网电能质量复合扰动自适应感知
1
作者 周建华 马国煜 +1 位作者 陶锴 徐俊俊 《电力系统保护与控制》 北大核心 2025年第19期151-161,共11页
为有效应对高渗透率分布式电源并网引起的电压暂升、电压振荡等电能质量扰动(power quality disturbances,PQDs)问题,提出一种基于双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络-注意力机制(attention mechanism,AM... 为有效应对高渗透率分布式电源并网引起的电压暂升、电压振荡等电能质量扰动(power quality disturbances,PQDs)问题,提出一种基于双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络-注意力机制(attention mechanism,AM)的复合扰动自适应感知方法。首先,通过灰狼优化(grey wolf optimizer,GWO)算法优化改进的完全自适应噪声集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)参数,实现扰动信号模态分解与重构。其次,提取扰动信号的层次加权排列熵(hierarchical weighted permutation entropy,HWPE)特征。最后,构建BiLSTM-AM模型,利用多维特征长短期依赖关系实现电能质量复合扰动识别。在仿真与真实电网数据集上开展实验验证,结果表明所提方法对不同扰动均具有较好的识别效果。此外,与现有深度网络模型相比,所提模型具有更高的识别准确率。 展开更多
关键词 配电网 分布式电源 电能质量扰动 层次加权排列熵 双向长短期记忆网络
在线阅读 下载PDF
Infrared small target detection algorithm via partial sum of the tensor nuclear norm and direction residual weighting
2
作者 SUN Bin XIA Xing-Ling +1 位作者 FU Rong-Guo SHI Liang 《红外与毫米波学报》 北大核心 2025年第2期277-288,共12页
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe... Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target. 展开更多
关键词 infrared small target detection infrared patch tensor model partial sum of the tensor nuclear norm direction residual weighting
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部