从众多用户收集的高维数据可用性越来越高,庞大的高维数据涉及用户个人隐私,如何在使用高维数据的同时保护用户的隐私极具挑战性。文中主要关注本地差分隐私下的高维数据发布问题。现有的解决方案首先构建概率图模型,生成输入数据的一...从众多用户收集的高维数据可用性越来越高,庞大的高维数据涉及用户个人隐私,如何在使用高维数据的同时保护用户的隐私极具挑战性。文中主要关注本地差分隐私下的高维数据发布问题。现有的解决方案首先构建概率图模型,生成输入数据的一组带噪声的低维边缘分布,然后使用它们近似输入数据集的联合分布以生成合成数据集。然而,现有方法在计算大量属性对的边缘分布构建概率图模型,以及计算概率图模型中规模较大的属性子集的联合分布时存在局限性。基于此,提出了一种本地差分隐私下的高维数据发布方法PrivHDP(High-dimensional Data Publication Under Local Differential Privacy)。首先,该方法使用随机采样响应代替传统的隐私预算分割策略扰动用户数据,提出自适应边缘分布计算方法计算成对属性的边缘分布构建Markov网。其次,使用新的方法代替互信息度量成对属性间的相关性,引入了基于高通滤波的阈值过滤技术缩减概率图构建过程的搜索空间,结合充分三角化操作和联合树算法获得一组属性子集。最后,基于联合分布分解和冗余消除,计算属性子集上的联合分布。在4个真实数据集上进行实验,结果表明,PrivHDP算法在k-way查询和SVM分类精度方面优于同类算法,验证了所提方法的可用性与高效性。展开更多
基于相似学习者判定方法由于具有轻量级的特点而被广泛用于个性化推荐领域,目前一般采用协同过滤等机器学习的方法,但此类方法并不能保证判定过程的可解释性以及判定结果的可信性。针对这一问题,提出一种基于相似学习者判定的个性化学...基于相似学习者判定方法由于具有轻量级的特点而被广泛用于个性化推荐领域,目前一般采用协同过滤等机器学习的方法,但此类方法并不能保证判定过程的可解释性以及判定结果的可信性。针对这一问题,提出一种基于相似学习者判定的个性化学习路径推荐及验证方法,采用进程互模拟的方式研究相似学习者的判定过程。首先,扩展CCS(Calculus of Communication System)的行为特性,提出LR-CCS(Learning Resources-Calculus of Communication System),用于建模学习者的学习行为序列;其次,通过进程代数中互模拟理论判定学习者学习行为序列相似性,提出学习行为序列强(弱)互模拟关系判定算法进行互模拟关系判定;再次,使用互模拟验证工具MWB(Mobile Workbench)验证学习者学习行为序列相似性,得到满足互模拟关系的候选推荐路径,以保证判定结果的正确性;最后通过一个基于相似学习者的推荐系统实例验证了该方法的有效性。展开更多
文摘从众多用户收集的高维数据可用性越来越高,庞大的高维数据涉及用户个人隐私,如何在使用高维数据的同时保护用户的隐私极具挑战性。文中主要关注本地差分隐私下的高维数据发布问题。现有的解决方案首先构建概率图模型,生成输入数据的一组带噪声的低维边缘分布,然后使用它们近似输入数据集的联合分布以生成合成数据集。然而,现有方法在计算大量属性对的边缘分布构建概率图模型,以及计算概率图模型中规模较大的属性子集的联合分布时存在局限性。基于此,提出了一种本地差分隐私下的高维数据发布方法PrivHDP(High-dimensional Data Publication Under Local Differential Privacy)。首先,该方法使用随机采样响应代替传统的隐私预算分割策略扰动用户数据,提出自适应边缘分布计算方法计算成对属性的边缘分布构建Markov网。其次,使用新的方法代替互信息度量成对属性间的相关性,引入了基于高通滤波的阈值过滤技术缩减概率图构建过程的搜索空间,结合充分三角化操作和联合树算法获得一组属性子集。最后,基于联合分布分解和冗余消除,计算属性子集上的联合分布。在4个真实数据集上进行实验,结果表明,PrivHDP算法在k-way查询和SVM分类精度方面优于同类算法,验证了所提方法的可用性与高效性。
文摘基于相似学习者判定方法由于具有轻量级的特点而被广泛用于个性化推荐领域,目前一般采用协同过滤等机器学习的方法,但此类方法并不能保证判定过程的可解释性以及判定结果的可信性。针对这一问题,提出一种基于相似学习者判定的个性化学习路径推荐及验证方法,采用进程互模拟的方式研究相似学习者的判定过程。首先,扩展CCS(Calculus of Communication System)的行为特性,提出LR-CCS(Learning Resources-Calculus of Communication System),用于建模学习者的学习行为序列;其次,通过进程代数中互模拟理论判定学习者学习行为序列相似性,提出学习行为序列强(弱)互模拟关系判定算法进行互模拟关系判定;再次,使用互模拟验证工具MWB(Mobile Workbench)验证学习者学习行为序列相似性,得到满足互模拟关系的候选推荐路径,以保证判定结果的正确性;最后通过一个基于相似学习者的推荐系统实例验证了该方法的有效性。