函数链网络(Functional Link Network——FLN)通过对输入向量(或模式)的非线性扩展,将非线性映射特性引入了单层神经网络,采用δ学习规则获得了快速的学习和非线性映射特性。本文在FLN基础上,借助凸集优化思想,利用最陡梯度下降技术获...函数链网络(Functional Link Network——FLN)通过对输入向量(或模式)的非线性扩展,将非线性映射特性引入了单层神经网络,采用δ学习规则获得了快速的学习和非线性映射特性。本文在FLN基础上,借助凸集优化思想,利用最陡梯度下降技术获得了比FLN更高的存储容量和更快速的学习速度。计算机模拟的结果证实了所提的算法性能。展开更多
文摘函数链网络(Functional Link Network——FLN)通过对输入向量(或模式)的非线性扩展,将非线性映射特性引入了单层神经网络,采用δ学习规则获得了快速的学习和非线性映射特性。本文在FLN基础上,借助凸集优化思想,利用最陡梯度下降技术获得了比FLN更高的存储容量和更快速的学习速度。计算机模拟的结果证实了所提的算法性能。