期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于机器学习的高速复杂流场流动控制效果预测分析
被引量:
7
1
作者
余柏杨
吕宏强
+2 位作者
周岩
罗振兵
刘学军
《实验流体力学》
CAS
CSCD
北大核心
2022年第3期44-54,共11页
流动控制激励器是主动流动控制技术的核心,其设计水平和工作性能直接决定了主动流动控制的应用效果和应用方向。为了获得流动控制激励器的作用规律,需要大量实验研究激励参数对控制效果参数的影响,实验代价较大。利用逆向等离子体合成...
流动控制激励器是主动流动控制技术的核心,其设计水平和工作性能直接决定了主动流动控制的应用效果和应用方向。为了获得流动控制激励器的作用规律,需要大量实验研究激励参数对控制效果参数的影响,实验代价较大。利用逆向等离子体合成射流激波控制实验数据,采用机器学习中的高斯过程回归模型,获得激励器参数(头锥直径、腔体体积、放电电容、出口直径)到控制效果参数(最大脱体距离)的映射规律,对比多种核函数下高斯过程回归的预测效果,采用特征重要性分析方法分析激励器参数对控制效果参数的影响程度。结果表明:对于小样本问题,采用2次多项式核函数Poly2的高斯过程回归预测精度最高。在特征重要性分析上,头锥直径对最大脱体距离的影响程度最大;其次是放电电容和腔体体积,2个参数的影响相近;出口直径影响最小。本文工作可为高速复杂流场流动控制实验中激励器各项参数的设置提供一定参考。
展开更多
关键词
主动流动控制
激励器
机器学习
高斯过程
特征重要性分析
在线阅读
下载PDF
职称材料
基于机器学习的机翼气动载荷重构及传感器优化布置
被引量:
1
2
作者
余柏杨
王明振
+3 位作者
王婷婷
虞建
刘学军
吕宏强
《南京航空航天大学学报》
CAS
CSCD
北大核心
2023年第5期798-807,共10页
风洞实验通过在机翼表面布置传感器来测量相应位置的气动载荷,由于传感器布置数量有限,难以直接得到整个机翼全息气动载荷分布。本文采用机器学习方法通过有限传感器数据重构机翼表面全息气动载荷,并提出了利用仿真数据对传感器进行优...
风洞实验通过在机翼表面布置传感器来测量相应位置的气动载荷,由于传感器布置数量有限,难以直接得到整个机翼全息气动载荷分布。本文采用机器学习方法通过有限传感器数据重构机翼表面全息气动载荷,并提出了利用仿真数据对传感器进行优化布置的方法。从计算流体力学(Computational fluid dynamics,CFD)计算所得的机翼全息气动数据中选取有限位置数据模拟传感器实验数据,对比深度学习模型、高斯过程回归(Gaussian process regression,GPR)、支持向量回归(Support vector regression,SVR)与BP神经网络(Neural network,NN)对气动载荷的重构精度。通过评估由传感器数据重构的全息载荷精度对传感器布置方式进行优化设计。以M6机翼为例在给定的两个工况条件下验证本文所提出的方法。实验结果表明,GPR模型获得了最高气动载荷重构精度;给出了M6机翼在不同传感器总数下最优的截面数和单个截面布点数,最低传感器布置数下的最优布置方式,以及流场变化相对剧烈的前缘区域与展向截面的传感器布置方式。
展开更多
关键词
计算流体力学
机翼气动载荷重构
压强系数
风洞实验
机器学习
在线阅读
下载PDF
职称材料
题名
基于机器学习的高速复杂流场流动控制效果预测分析
被引量:
7
1
作者
余柏杨
吕宏强
周岩
罗振兵
刘学军
机构
南京航空航天大学计算机科学与技术学院/人工智能学院模式分析与机器智能工业和信息化部重点实验室
空气动力学国家
重点
实验室
气动噪声控制
重点
实验室
软件新
技术
与产业化协同创新中心
南京航空航天大学
航空
学院
国防科技
大学
空天
科学
学院
出处
《实验流体力学》
CAS
CSCD
北大核心
2022年第3期44-54,共11页
基金
航空科学基金(2018ZA52002,2019ZA052011)
空气动力学国家重点实验室基金(SKLA20180102)
气动噪声控制重点实验室基金(ANCL20190103)。
文摘
流动控制激励器是主动流动控制技术的核心,其设计水平和工作性能直接决定了主动流动控制的应用效果和应用方向。为了获得流动控制激励器的作用规律,需要大量实验研究激励参数对控制效果参数的影响,实验代价较大。利用逆向等离子体合成射流激波控制实验数据,采用机器学习中的高斯过程回归模型,获得激励器参数(头锥直径、腔体体积、放电电容、出口直径)到控制效果参数(最大脱体距离)的映射规律,对比多种核函数下高斯过程回归的预测效果,采用特征重要性分析方法分析激励器参数对控制效果参数的影响程度。结果表明:对于小样本问题,采用2次多项式核函数Poly2的高斯过程回归预测精度最高。在特征重要性分析上,头锥直径对最大脱体距离的影响程度最大;其次是放电电容和腔体体积,2个参数的影响相近;出口直径影响最小。本文工作可为高速复杂流场流动控制实验中激励器各项参数的设置提供一定参考。
关键词
主动流动控制
激励器
机器学习
高斯过程
特征重要性分析
Keywords
active flow control
exciter
machine learning
Gaussian process
feature importance analysis
分类号
V211.3 [航空宇航科学与技术—航空宇航推进理论与工程]
在线阅读
下载PDF
职称材料
题名
基于机器学习的机翼气动载荷重构及传感器优化布置
被引量:
1
2
作者
余柏杨
王明振
王婷婷
虞建
刘学军
吕宏强
机构
南京航空航天大学
计算机
科学与
技术
学院
/人工智能
学院
软件新
技术
与产业化协同创新中心
南京航空航天大学
航空
学院
中国特种飞行器研究所高速水动力
航空
科技
重点
实验室
出处
《南京航空航天大学学报》
CAS
CSCD
北大核心
2023年第5期798-807,共10页
基金
航空科学基金(2018ZA52002,2019ZA052011)
空气动力学国家重点实验室基金(SKLA20180102)
气动噪声控制重点实验室基金(ANCL20190103)。
文摘
风洞实验通过在机翼表面布置传感器来测量相应位置的气动载荷,由于传感器布置数量有限,难以直接得到整个机翼全息气动载荷分布。本文采用机器学习方法通过有限传感器数据重构机翼表面全息气动载荷,并提出了利用仿真数据对传感器进行优化布置的方法。从计算流体力学(Computational fluid dynamics,CFD)计算所得的机翼全息气动数据中选取有限位置数据模拟传感器实验数据,对比深度学习模型、高斯过程回归(Gaussian process regression,GPR)、支持向量回归(Support vector regression,SVR)与BP神经网络(Neural network,NN)对气动载荷的重构精度。通过评估由传感器数据重构的全息载荷精度对传感器布置方式进行优化设计。以M6机翼为例在给定的两个工况条件下验证本文所提出的方法。实验结果表明,GPR模型获得了最高气动载荷重构精度;给出了M6机翼在不同传感器总数下最优的截面数和单个截面布点数,最低传感器布置数下的最优布置方式,以及流场变化相对剧烈的前缘区域与展向截面的传感器布置方式。
关键词
计算流体力学
机翼气动载荷重构
压强系数
风洞实验
机器学习
Keywords
computational fluid dynamics(CFD)
aerodynamic load reconstruction of wing
pressure coefficient
wind tunnel experiment
machine learning
分类号
V19 [航空宇航科学与技术—人机与环境工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于机器学习的高速复杂流场流动控制效果预测分析
余柏杨
吕宏强
周岩
罗振兵
刘学军
《实验流体力学》
CAS
CSCD
北大核心
2022
7
在线阅读
下载PDF
职称材料
2
基于机器学习的机翼气动载荷重构及传感器优化布置
余柏杨
王明振
王婷婷
虞建
刘学军
吕宏强
《南京航空航天大学学报》
CAS
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部