在基于增强现实装配引导的复杂零/部件装配场景中,由于手部对零/部件的遮挡,导致零件位姿解算时产生较大的误差,甚至造成求解失败。目前针对手工装配零件的位姿估计算法在解决零件遮挡问题时没有考虑手部信息,使得位姿估计精度难以满足...在基于增强现实装配引导的复杂零/部件装配场景中,由于手部对零/部件的遮挡,导致零件位姿解算时产生较大的误差,甚至造成求解失败。目前针对手工装配零件的位姿估计算法在解决零件遮挡问题时没有考虑手部信息,使得位姿估计精度难以满足增强装配实际应用的要求。针对上述问题,提出了融合手部姿态的零件6D位姿估计算法,即HandICG算法。该算法将手部的姿态信息与迭代对应几何(Iterative Corresponding Geometry,ICG)算法进行融合,当发生手部遮挡时,将手部的姿态信息应用到零件姿态的求解中,从而显著提高手部遮挡情况下零件位姿估计的精度,实验表明,平均模型点距离(Average Distance of Model points,ADD)相关评价指标达到74.73%,是ICG算法的2.61倍。该算法显著提升了增强装配场景中零件位姿解算的准确性和鲁棒性。展开更多
磁悬浮转子在基础激励作用下振动会进一步加剧,严重时会发生碰摩而使系统失稳。针对此问题,通过引入扩张状态观测器(extended state observer,简称ESO)来实现基础激励的振动控制,其鲁棒性强且不依赖精确建模,可以实时观测扰动。首先,搭...磁悬浮转子在基础激励作用下振动会进一步加剧,严重时会发生碰摩而使系统失稳。针对此问题,通过引入扩张状态观测器(extended state observer,简称ESO)来实现基础激励的振动控制,其鲁棒性强且不依赖精确建模,可以实时观测扰动。首先,搭建基础激励下磁悬浮转子机电一体化模型,利用该模型仿真分析了基础激励参数与比例-积分-微分(proportional integral derivative,简称PID)控制参数变化对系统动力学响应的影响规律,得知PID难以满足基础激励抑振需求;其次,分析了基础激励对转子系统的径向耦合作用,利用ESO将基础等效力与系统耦合项作为扰动进行振动补偿,并完成ESO的设计与参数整定;最后,仿真对比分析了不同基础激励作用下引入ESO的振动补偿效果。试验结果表明,引入ESO使基础激励下转子振动位移衰减达30%以上,具有较强的鲁棒性和抗干扰能力。展开更多
文摘在基于增强现实装配引导的复杂零/部件装配场景中,由于手部对零/部件的遮挡,导致零件位姿解算时产生较大的误差,甚至造成求解失败。目前针对手工装配零件的位姿估计算法在解决零件遮挡问题时没有考虑手部信息,使得位姿估计精度难以满足增强装配实际应用的要求。针对上述问题,提出了融合手部姿态的零件6D位姿估计算法,即HandICG算法。该算法将手部的姿态信息与迭代对应几何(Iterative Corresponding Geometry,ICG)算法进行融合,当发生手部遮挡时,将手部的姿态信息应用到零件姿态的求解中,从而显著提高手部遮挡情况下零件位姿估计的精度,实验表明,平均模型点距离(Average Distance of Model points,ADD)相关评价指标达到74.73%,是ICG算法的2.61倍。该算法显著提升了增强装配场景中零件位姿解算的准确性和鲁棒性。
文摘磁悬浮转子在基础激励作用下振动会进一步加剧,严重时会发生碰摩而使系统失稳。针对此问题,通过引入扩张状态观测器(extended state observer,简称ESO)来实现基础激励的振动控制,其鲁棒性强且不依赖精确建模,可以实时观测扰动。首先,搭建基础激励下磁悬浮转子机电一体化模型,利用该模型仿真分析了基础激励参数与比例-积分-微分(proportional integral derivative,简称PID)控制参数变化对系统动力学响应的影响规律,得知PID难以满足基础激励抑振需求;其次,分析了基础激励对转子系统的径向耦合作用,利用ESO将基础等效力与系统耦合项作为扰动进行振动补偿,并完成ESO的设计与参数整定;最后,仿真对比分析了不同基础激励作用下引入ESO的振动补偿效果。试验结果表明,引入ESO使基础激励下转子振动位移衰减达30%以上,具有较强的鲁棒性和抗干扰能力。