随着人工智能技术的快速发展,大语言模型(Large language models,LLMs)在多个领域的应用日益广泛。然而,航空发动机领域由于缺乏高质量的人工编写问答数据集,限制了专家问答大模型的应用。本文提出了一种基于LLMs的问答数据集自动化构...随着人工智能技术的快速发展,大语言模型(Large language models,LLMs)在多个领域的应用日益广泛。然而,航空发动机领域由于缺乏高质量的人工编写问答数据集,限制了专家问答大模型的应用。本文提出了一种基于LLMs的问答数据集自动化构建方法,该方法无需人工干预即可生成高质量的开放式问答数据。在数据生成阶段,采用上下文学习方法和输入优先生成策略,增强了生成数据的稳定性;在数据过滤阶段,通过原文相似度的忠实度评估和大模型的语义质量评估,建立了数据质量自动评估机制,有效筛选出受幻觉影响的异常数据,确保数据的事实可靠性。实验结果表明,该方法显著提升了生成数据集的质量,经过指令微调后的模型在航空发动机领域的知识问答表现显著提升。本文的研究成果不仅为航空发动机领域的大模型应用提供了坚实基础,也为其他复杂工程领域的数据集自动化构建提供了参考。展开更多
大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和...大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和知识图谱(knowledge graph,KG)协同的跨域异质数据查询框架,在LLM+KG的范式下给出跨域异质数据查询的一个治理方案.为确保LLM能够适应多场景中的跨域异质数据,首先采用适配器对跨域异质数据进行融合,并构建相应的知识图谱.为提高查询效率,引入线性知识图,并提出同源知识图抽取算法HKGE来实现知识图谱的重构,可显著提高查询性能,确保跨域异质数据治理的高效性.进而,为保证多域数据查询的高可信度,提出可信候选子图匹配算法Trust HKGM,用于检验跨域同源数据的置信度计算和可信候选子图匹配,剔除低质量节点.最后,提出基于线性知识图提示的多域数据查询算法MKLGP,实现LLM+KG范式下的高效可信跨域查询.该方法在多个真实数据集上进行了广泛实验,验证了所提方法的有效性和高效性.展开更多
精确的心脏结构分割对于心脏血管疾病辅助诊断和术前的准确评估有着重要的意义。不同模态的影像之间在空间分布和语义表达上存在显著差异,但现有方法多采用单分支网络结构,难以充分融合多模态信息,在多模态任务上缺乏泛化能力。针对这...精确的心脏结构分割对于心脏血管疾病辅助诊断和术前的准确评估有着重要的意义。不同模态的影像之间在空间分布和语义表达上存在显著差异,但现有方法多采用单分支网络结构,难以充分融合多模态信息,在多模态任务上缺乏泛化能力。针对这一问题,提出一种融合状态空间模型Mamba与卷积模型的多分支协同分割网络MCNet(Multi-modal collaborative network)。该网络主要由3个模块构成:基于Mamba与卷积神经网络的双分支特征提取器、动态特征融合模块以及Mamba解码器。特征提取器的双分支分别侧重于提取全局语义与局部细节特征,动态特征融合模块根据图像动态调整多种融合路径的权重,从而实现不同分支的动态特征整合。本文提出的方法在心脏的MRI数据集ACDC与超声数据集CAMUS上进行了充分实验。实验结果表明,本文方法通过基于混合专家(Mixture of experts,MoE)机制的动态特征融合模块,动态调整Mamba全局特征和CNN局部特征的融合权重,在边界清晰的ACDC数据集中,平均Dice和交并比IoU分别达到0.845和0.779,在边界模糊的CAMUS数据集中的平均Dice和IoU分别达到0.883和0.796,均优于目前主流方法。同时,消融实验进一步验证了每个模块的有效性。MCNet通过MoE机制实时调整全局和局部特征的融合权重,在保证全局感知的同时提升了结构细节完整性,为多模态心脏影像分割提供了高效而鲁棒的解决方案。展开更多
文摘随着人工智能技术的快速发展,大语言模型(Large language models,LLMs)在多个领域的应用日益广泛。然而,航空发动机领域由于缺乏高质量的人工编写问答数据集,限制了专家问答大模型的应用。本文提出了一种基于LLMs的问答数据集自动化构建方法,该方法无需人工干预即可生成高质量的开放式问答数据。在数据生成阶段,采用上下文学习方法和输入优先生成策略,增强了生成数据的稳定性;在数据过滤阶段,通过原文相似度的忠实度评估和大模型的语义质量评估,建立了数据质量自动评估机制,有效筛选出受幻觉影响的异常数据,确保数据的事实可靠性。实验结果表明,该方法显著提升了生成数据集的质量,经过指令微调后的模型在航空发动机领域的知识问答表现显著提升。本文的研究成果不仅为航空发动机领域的大模型应用提供了坚实基础,也为其他复杂工程领域的数据集自动化构建提供了参考。
文摘大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和知识图谱(knowledge graph,KG)协同的跨域异质数据查询框架,在LLM+KG的范式下给出跨域异质数据查询的一个治理方案.为确保LLM能够适应多场景中的跨域异质数据,首先采用适配器对跨域异质数据进行融合,并构建相应的知识图谱.为提高查询效率,引入线性知识图,并提出同源知识图抽取算法HKGE来实现知识图谱的重构,可显著提高查询性能,确保跨域异质数据治理的高效性.进而,为保证多域数据查询的高可信度,提出可信候选子图匹配算法Trust HKGM,用于检验跨域同源数据的置信度计算和可信候选子图匹配,剔除低质量节点.最后,提出基于线性知识图提示的多域数据查询算法MKLGP,实现LLM+KG范式下的高效可信跨域查询.该方法在多个真实数据集上进行了广泛实验,验证了所提方法的有效性和高效性.
文摘精确的心脏结构分割对于心脏血管疾病辅助诊断和术前的准确评估有着重要的意义。不同模态的影像之间在空间分布和语义表达上存在显著差异,但现有方法多采用单分支网络结构,难以充分融合多模态信息,在多模态任务上缺乏泛化能力。针对这一问题,提出一种融合状态空间模型Mamba与卷积模型的多分支协同分割网络MCNet(Multi-modal collaborative network)。该网络主要由3个模块构成:基于Mamba与卷积神经网络的双分支特征提取器、动态特征融合模块以及Mamba解码器。特征提取器的双分支分别侧重于提取全局语义与局部细节特征,动态特征融合模块根据图像动态调整多种融合路径的权重,从而实现不同分支的动态特征整合。本文提出的方法在心脏的MRI数据集ACDC与超声数据集CAMUS上进行了充分实验。实验结果表明,本文方法通过基于混合专家(Mixture of experts,MoE)机制的动态特征融合模块,动态调整Mamba全局特征和CNN局部特征的融合权重,在边界清晰的ACDC数据集中,平均Dice和交并比IoU分别达到0.845和0.779,在边界模糊的CAMUS数据集中的平均Dice和IoU分别达到0.883和0.796,均优于目前主流方法。同时,消融实验进一步验证了每个模块的有效性。MCNet通过MoE机制实时调整全局和局部特征的融合权重,在保证全局感知的同时提升了结构细节完整性,为多模态心脏影像分割提供了高效而鲁棒的解决方案。