期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
标签噪声鲁棒学习算法研究综述 被引量:7
1
作者 宫辰 张闯 王启舟 《航空兵器》 CSCD 北大核心 2020年第3期20-26,共7页
在机器学习领域,监督学习算法在理论层面和工程应用中均取得了丰硕的成果,但此类算法的效果严重依赖训练样本的标签质量,在实际问题中获取具有高质量标签的训练样本通常费时费力。为节省人力物力,网络爬虫、众包方法等替代方法被用于对... 在机器学习领域,监督学习算法在理论层面和工程应用中均取得了丰硕的成果,但此类算法的效果严重依赖训练样本的标签质量,在实际问题中获取具有高质量标签的训练样本通常费时费力。为节省人力物力,网络爬虫、众包方法等替代方法被用于对训练数据的采集。不幸的是,这些替代方法获取的数据往往存在大量的错误标注,即标签噪声,由此带来了很多潜在的问题。因此,对标签噪声鲁棒学习算法的研究,在推广机器学习工程应用、降低机器学习算法部署成本方面具有重要的意义。本文对标签噪声鲁棒学习算法的最新研究成果进展进行了全面综述,分别从标签噪声的产生、影响、分类等方面进行了详细的总结,对每类标签噪声的处理方法进行了介绍,并对每类处理方法的优缺点进行分析。 展开更多
关键词 人工智能 机器学习 弱监督学习 标签噪声 深度学习 鲁棒学习算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部