语义分割技术能够对复杂、多元的场景实现细粒度理解,是促进无人系统高效、智能工作的关键技术之一.大规模无监督语义分割旨在从大规模未标记图像中学习语义分割能力.然而,现有方法由于自学习伪标签存在类别混淆和形状表示欠佳的问题,...语义分割技术能够对复杂、多元的场景实现细粒度理解,是促进无人系统高效、智能工作的关键技术之一.大规模无监督语义分割旨在从大规模未标记图像中学习语义分割能力.然而,现有方法由于自学习伪标签存在类别混淆和形状表示欠佳的问题,导致最终分割精度较低.为此,本文提出一种伪标签去噪和SAM优化(Pseudo-label Denoising and SAM Optimization,PDSO)方法以解决大规模无监督语义分割问题.本文设计了一种基于去噪的特征微调模块,在基于小损失准则从大规模数据集中筛选出具有干净图像级伪标签的潜在样本后,利用这些干净样本对预训练的主干网络进行微调,使网络获得更稳健的类别表示.为了进一步减少伪标签中的类别噪声,设计了一种基于聚类的样本去噪模块,根据类别占比和样本与聚类中心之间的距离来去除干扰聚类任务的噪声样本,从而提升聚类性能.本文还设计了一种SAM提示优化模块,根据聚类距离识别出图像中的活跃类别,以过滤噪声目标,并将点和框作为SAM的目标提示信息,生成预期的目标掩膜以细化伪标签中目标的边缘.实验结果表明,在大规模语义分割数据集ImageNet-S_(50)、ImageNet-S_(300)和ImageNet-S_(919)的测试集上,本文方法在平均交并比指标上分别达到了45.0%、26.6%和14.5%,显著提高了分割目标的类别准确率和边缘精度.展开更多
软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件...软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件系统的开发过程中自动地修复代码中存在的缺陷,节约软件系统开发和维护成本,提高软件系统中数据要素的保密性、可用性和完整性.随着大语言模型(large language model,LLM)技术的发展,涌现出许多能力强大的代码大语言模型,并且代码LLM在APR领域的应用中表现出了强大的修复能力,弥补了传统方案对于代码理解能力、补丁生成能力方面的不足,进一步提高了代码修复工具的水平.全面调研分析了近年APR相关的高水平论文,总结了APR领域的最新发展,系统归纳了完形填空模式和神经机器翻译模式2类基于LLM的APR技术,并从模型类型、模型规模、修复的缺陷类型、修复的编程语言和修复方案优缺点等角度进行全方位的对比与研讨.同时,对APR数据集和评价APR修复能力的指标进行了梳理和分析,并且对现有的实证研究展开深入探讨.最后,分析了当前APR领域存在的挑战及未来的研究方向.展开更多
电力系统中包含大量敏感数据,保护这些数据的隐私安全对用户至关重要。针对在分布式最优潮流(optimal power flow,OPF)算法中,由于迭代过程中信息交换频繁导致的隐私泄露问题,提出一种面向分布式最优潮流的隐私保护方法。该算法采用完...电力系统中包含大量敏感数据,保护这些数据的隐私安全对用户至关重要。针对在分布式最优潮流(optimal power flow,OPF)算法中,由于迭代过程中信息交换频繁导致的隐私泄露问题,提出一种面向分布式最优潮流的隐私保护方法。该算法采用完全分布式计算方法来进一步增强隐私性,并引入了自适应惩罚参数方法以提高计算效率。在算法的迭代过程中对各节点间交流的传输变量添加差分隐私噪声,从而阻止攻击者通过窃听传输变量真实值而推测算法中的关键参量,实现了模糊关键参数的OPF问题的分布式求解框架。此外,对于所提算法的收敛性和最优性进行了理论证明,并在IEEE 9-总线系统中进行仿真验证。仿真结果验证了该算法具有收敛性与准确性,隐私保护性能也优于对比算法。该算法有效地解决了在迭代过程中由于信息交换导致的隐私泄露问题,在保持计算效率的同时,显著提高了数据隐私的安全性。展开更多
针对移动边缘云和移动辅助设备联合计算卸载和资源分配的优化问题,提出一个联合计算卸载方案。计算用户设备(Computing User Equipment,CUE)通过为辅助用户设备(Helper User Equipment,HUE)提供带宽激励的方式,将计算卸载到边缘云和辅...针对移动边缘云和移动辅助设备联合计算卸载和资源分配的优化问题,提出一个联合计算卸载方案。计算用户设备(Computing User Equipment,CUE)通过为辅助用户设备(Helper User Equipment,HUE)提供带宽激励的方式,将计算卸载到边缘云和辅助用户设备,并通过优化本地、辅助用户设备和边缘云中的资源分配,实现对带宽和计算资源及时间的实际约束的最小加权能耗。为了解决非凸优化问题,采用几何规划(Geometric Programming,GP)和瓶颈匹配(Bottleneck Matching,BM)方法求近似凸问题的最优解。数值研究表明,与云卸载策略相比,在卸载延迟没有明显增加的情况下,该方案的总计算时间可以减少35%~40%。展开更多
文摘语义分割技术能够对复杂、多元的场景实现细粒度理解,是促进无人系统高效、智能工作的关键技术之一.大规模无监督语义分割旨在从大规模未标记图像中学习语义分割能力.然而,现有方法由于自学习伪标签存在类别混淆和形状表示欠佳的问题,导致最终分割精度较低.为此,本文提出一种伪标签去噪和SAM优化(Pseudo-label Denoising and SAM Optimization,PDSO)方法以解决大规模无监督语义分割问题.本文设计了一种基于去噪的特征微调模块,在基于小损失准则从大规模数据集中筛选出具有干净图像级伪标签的潜在样本后,利用这些干净样本对预训练的主干网络进行微调,使网络获得更稳健的类别表示.为了进一步减少伪标签中的类别噪声,设计了一种基于聚类的样本去噪模块,根据类别占比和样本与聚类中心之间的距离来去除干扰聚类任务的噪声样本,从而提升聚类性能.本文还设计了一种SAM提示优化模块,根据聚类距离识别出图像中的活跃类别,以过滤噪声目标,并将点和框作为SAM的目标提示信息,生成预期的目标掩膜以细化伪标签中目标的边缘.实验结果表明,在大规模语义分割数据集ImageNet-S_(50)、ImageNet-S_(300)和ImageNet-S_(919)的测试集上,本文方法在平均交并比指标上分别达到了45.0%、26.6%和14.5%,显著提高了分割目标的类别准确率和边缘精度.
文摘软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件系统的开发过程中自动地修复代码中存在的缺陷,节约软件系统开发和维护成本,提高软件系统中数据要素的保密性、可用性和完整性.随着大语言模型(large language model,LLM)技术的发展,涌现出许多能力强大的代码大语言模型,并且代码LLM在APR领域的应用中表现出了强大的修复能力,弥补了传统方案对于代码理解能力、补丁生成能力方面的不足,进一步提高了代码修复工具的水平.全面调研分析了近年APR相关的高水平论文,总结了APR领域的最新发展,系统归纳了完形填空模式和神经机器翻译模式2类基于LLM的APR技术,并从模型类型、模型规模、修复的缺陷类型、修复的编程语言和修复方案优缺点等角度进行全方位的对比与研讨.同时,对APR数据集和评价APR修复能力的指标进行了梳理和分析,并且对现有的实证研究展开深入探讨.最后,分析了当前APR领域存在的挑战及未来的研究方向.
文摘电力系统中包含大量敏感数据,保护这些数据的隐私安全对用户至关重要。针对在分布式最优潮流(optimal power flow,OPF)算法中,由于迭代过程中信息交换频繁导致的隐私泄露问题,提出一种面向分布式最优潮流的隐私保护方法。该算法采用完全分布式计算方法来进一步增强隐私性,并引入了自适应惩罚参数方法以提高计算效率。在算法的迭代过程中对各节点间交流的传输变量添加差分隐私噪声,从而阻止攻击者通过窃听传输变量真实值而推测算法中的关键参量,实现了模糊关键参数的OPF问题的分布式求解框架。此外,对于所提算法的收敛性和最优性进行了理论证明,并在IEEE 9-总线系统中进行仿真验证。仿真结果验证了该算法具有收敛性与准确性,隐私保护性能也优于对比算法。该算法有效地解决了在迭代过程中由于信息交换导致的隐私泄露问题,在保持计算效率的同时,显著提高了数据隐私的安全性。
文摘针对移动边缘云和移动辅助设备联合计算卸载和资源分配的优化问题,提出一个联合计算卸载方案。计算用户设备(Computing User Equipment,CUE)通过为辅助用户设备(Helper User Equipment,HUE)提供带宽激励的方式,将计算卸载到边缘云和辅助用户设备,并通过优化本地、辅助用户设备和边缘云中的资源分配,实现对带宽和计算资源及时间的实际约束的最小加权能耗。为了解决非凸优化问题,采用几何规划(Geometric Programming,GP)和瓶颈匹配(Bottleneck Matching,BM)方法求近似凸问题的最优解。数值研究表明,与云卸载策略相比,在卸载延迟没有明显增加的情况下,该方案的总计算时间可以减少35%~40%。