期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进U-Transformer模型的金刚石刀刃异常检测算法
1
作者
王大伟
李丛
朱长水
《现代制造工程》
北大核心
2025年第7期120-128,共9页
针对金刚石刀刃缺陷特征差异大、缺陷样本少的问题,提出了一种基于改进U-Transformer特征重建模型的金刚石刀刃异常检测算法。该方法仅需使用正常样本训练即可完成异常区域的检测与定位。首先,利用冻结的预训练深度卷积神经网络(Convolu...
针对金刚石刀刃缺陷特征差异大、缺陷样本少的问题,提出了一种基于改进U-Transformer特征重建模型的金刚石刀刃异常检测算法。该方法仅需使用正常样本训练即可完成异常区域的检测与定位。首先,利用冻结的预训练深度卷积神经网络(Convolutional Neural Networks,CNN)模型提取多尺度融合特征,放大正常图像与异常图像的差异;然后,构建基于U型Transformer结构的编码器-解码器特征重建模型,计算重建特征与输入特征的特征相似性,生成相似性响应图;最后,为消除正常区域的噪声响应,利用多层感知机(Multi-Layer Perceptron,MLP)网络估计异常比例因子,修正相似性响应图,得到异常分数图。实验结果表明,提出的方法在金刚石刀刃缺陷数据集上Image AUROC指标为0.989,Piexl AUROC指标为0.992,能够满足金刚石刀刃异常检测需求。
展开更多
关键词
金刚石刀刃
异常检测
U-Transformer模型
预训练
多层感知机网络
特征重建
在线阅读
下载PDF
职称材料
基于扩展CENTRIST的遥感场景分类
2
作者
马瑾
袁宝华
王欢
《计算机应用与软件》
北大核心
2021年第2期126-131,139,共7页
提出一种基于扩展CENTRIST纹理算子的遥感场景分类方法。它由更多邻域规模的三个子方案组成,不仅继承了CENTRIST的优点,而且编码了更多不同纹理的局部结构信息。通过三种不同模式的纹理算子来提取多通道图像纹理特征,通过谱回归判别分...
提出一种基于扩展CENTRIST纹理算子的遥感场景分类方法。它由更多邻域规模的三个子方案组成,不仅继承了CENTRIST的优点,而且编码了更多不同纹理的局部结构信息。通过三种不同模式的纹理算子来提取多通道图像纹理特征,通过谱回归判别分析进行分类识别。提出能够捕获多通道图像中互补信息的多通道eCT融合机制,以获得更高的分类准确率。在UC Merced标准数据库上的实验表明,该方法得到的结果比CENTRIST效果更好,鲁棒性更高。
展开更多
关键词
场景分类
CENTRIST
扩展CENTRIST
多通道描述符
谱回归判别分析
在线阅读
下载PDF
职称材料
题名
基于改进U-Transformer模型的金刚石刀刃异常检测算法
1
作者
王大伟
李丛
朱长水
机构
南京理工大学泰州科技学院计算机科学与工程学院
出处
《现代制造工程》
北大核心
2025年第7期120-128,共9页
基金
国家自然科学基金资助项目(61272210)
泰州市科技支撑计划(社会发展)项目(SSF20230056)。
文摘
针对金刚石刀刃缺陷特征差异大、缺陷样本少的问题,提出了一种基于改进U-Transformer特征重建模型的金刚石刀刃异常检测算法。该方法仅需使用正常样本训练即可完成异常区域的检测与定位。首先,利用冻结的预训练深度卷积神经网络(Convolutional Neural Networks,CNN)模型提取多尺度融合特征,放大正常图像与异常图像的差异;然后,构建基于U型Transformer结构的编码器-解码器特征重建模型,计算重建特征与输入特征的特征相似性,生成相似性响应图;最后,为消除正常区域的噪声响应,利用多层感知机(Multi-Layer Perceptron,MLP)网络估计异常比例因子,修正相似性响应图,得到异常分数图。实验结果表明,提出的方法在金刚石刀刃缺陷数据集上Image AUROC指标为0.989,Piexl AUROC指标为0.992,能够满足金刚石刀刃异常检测需求。
关键词
金刚石刀刃
异常检测
U-Transformer模型
预训练
多层感知机网络
特征重建
Keywords
diamond blade
anomaly detection
U-Transformer model
pre-training
MLP network
feature reconstruction
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于扩展CENTRIST的遥感场景分类
2
作者
马瑾
袁宝华
王欢
机构
南京理工大学泰州科技学院计算机科学与工程学院
南京理工大学
计算机
科学与
工程
学院
出处
《计算机应用与软件》
北大核心
2021年第2期126-131,139,共7页
基金
国家自然科学基金项目(61703209)。
文摘
提出一种基于扩展CENTRIST纹理算子的遥感场景分类方法。它由更多邻域规模的三个子方案组成,不仅继承了CENTRIST的优点,而且编码了更多不同纹理的局部结构信息。通过三种不同模式的纹理算子来提取多通道图像纹理特征,通过谱回归判别分析进行分类识别。提出能够捕获多通道图像中互补信息的多通道eCT融合机制,以获得更高的分类准确率。在UC Merced标准数据库上的实验表明,该方法得到的结果比CENTRIST效果更好,鲁棒性更高。
关键词
场景分类
CENTRIST
扩展CENTRIST
多通道描述符
谱回归判别分析
Keywords
Scene classification
CENTRIST
Extended CENTRIST
Multi-channel descriptor
Spectral regression discriminant analysis
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进U-Transformer模型的金刚石刀刃异常检测算法
王大伟
李丛
朱长水
《现代制造工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于扩展CENTRIST的遥感场景分类
马瑾
袁宝华
王欢
《计算机应用与软件》
北大核心
2021
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部