期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于社交媒体中文本信息的早期抑郁症检测
被引量:
6
1
作者
张梦娜
王君岩
+2 位作者
龙洋
张浩峰
胡勇
《中国生物医学工程学报》
CAS
CSCD
北大核心
2022年第1期21-30,共10页
诊断抑郁症的传统方法是通过面对面的评估和交谈。但是,许多患有抑郁症的患者不愿意在早期阶段就医,从而使病情恶化。为了在早期判断抑郁症患者的情况,提出一种利用社交媒体文本信息的时间序列特征和多示例学习的检测模型,考虑到抑郁症...
诊断抑郁症的传统方法是通过面对面的评估和交谈。但是,许多患有抑郁症的患者不愿意在早期阶段就医,从而使病情恶化。为了在早期判断抑郁症患者的情况,提出一种利用社交媒体文本信息的时间序列特征和多示例学习的检测模型,考虑到抑郁症状不会立即出现,所以时序样本的使用显得非常重要,因此使用无监督LSTM提取时间序列特征,训练分类器实现二值分类,并使用多示例学习模型来解决不平衡样本问题。首先采用朴素贝叶斯分类器、随机森林、多元社会网络学习和多式抑郁词典学习作为基准,随后利用具有无监督LSTM时间序列功能的多示例学习来更准确地检测抑郁症。在MDDL数据集的基础上,整理出200个调查对象合计7946条推文信息,并按照训练测试比为8:2的实验得到结果如下:在准确率、精度,召回率和F1得分上分别达到75.0%、76.0%、73.0%、74.5%。结果表明,通过社交媒体中的文本数据,采用机器学习进行早期抑郁症检测是可行的。此外,通过大量的消融实验也证实,采用时间序列特征的方法要比传统的基准模型方法能够获得更好的性能。
展开更多
关键词
抑郁症检测
长短时记忆
时间序列特征
社交媒体
多示例学习
在线阅读
下载PDF
职称材料
题名
基于社交媒体中文本信息的早期抑郁症检测
被引量:
6
1
作者
张梦娜
王君岩
龙洋
张浩峰
胡勇
机构
南京理工大学医院预防保健科
新南威尔士
大学
计算机
科
学与工程学院
杜伦
大学
计算机
科
学系
南京理工大学
计算机
科
学与工程学院
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2022年第1期21-30,共10页
基金
国家自然科学基金(61872187,62072246)
英国医学研究委员会创新基金No.MR/S003916/1。
文摘
诊断抑郁症的传统方法是通过面对面的评估和交谈。但是,许多患有抑郁症的患者不愿意在早期阶段就医,从而使病情恶化。为了在早期判断抑郁症患者的情况,提出一种利用社交媒体文本信息的时间序列特征和多示例学习的检测模型,考虑到抑郁症状不会立即出现,所以时序样本的使用显得非常重要,因此使用无监督LSTM提取时间序列特征,训练分类器实现二值分类,并使用多示例学习模型来解决不平衡样本问题。首先采用朴素贝叶斯分类器、随机森林、多元社会网络学习和多式抑郁词典学习作为基准,随后利用具有无监督LSTM时间序列功能的多示例学习来更准确地检测抑郁症。在MDDL数据集的基础上,整理出200个调查对象合计7946条推文信息,并按照训练测试比为8:2的实验得到结果如下:在准确率、精度,召回率和F1得分上分别达到75.0%、76.0%、73.0%、74.5%。结果表明,通过社交媒体中的文本数据,采用机器学习进行早期抑郁症检测是可行的。此外,通过大量的消融实验也证实,采用时间序列特征的方法要比传统的基准模型方法能够获得更好的性能。
关键词
抑郁症检测
长短时记忆
时间序列特征
社交媒体
多示例学习
Keywords
depression detection
long short-term memory(LSTM)
time series feature
social media
multi-instance learning
分类号
R318 [医药卫生—生物医学工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于社交媒体中文本信息的早期抑郁症检测
张梦娜
王君岩
龙洋
张浩峰
胡勇
《中国生物医学工程学报》
CAS
CSCD
北大核心
2022
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部