期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
区域水稻田土壤-作物系统重金属污染高光谱遥感定量估测 被引量:5
1
作者 王淼 储学远 +2 位作者 钱家炜 钟亮 李建龙 《江苏农业科学》 北大核心 2023年第12期172-180,共9页
为了探究动态、无损伤监测区域农田土壤重金属污染和借助土壤-作物系统机理定量反演土壤重金属含量的科学方法,从2018—2020年采集了江苏省宜兴市徐舍镇的22个水稻田样地共76个点的土壤样品,利用地面高光谱仪系统获取了水稻叶片光谱与... 为了探究动态、无损伤监测区域农田土壤重金属污染和借助土壤-作物系统机理定量反演土壤重金属含量的科学方法,从2018—2020年采集了江苏省宜兴市徐舍镇的22个水稻田样地共76个点的土壤样品,利用地面高光谱仪系统获取了水稻叶片光谱与水稻的生长系统等数据,在实验室测量了土壤中镉(Cd)、砷(As)含量等指标,将水稻叶片光谱进行平滑处理和7种形式的数学变换并进行Pearson相关性分析以筛选相关波段,通过遗传算法优化的偏最小二乘回归法构建了土壤Cd、As含量的估测模型。研究结果表明,估测土壤Cd、As含量的最佳模型均为倒数对数一阶微分光谱模型,r^(2)分别为0.77和0.89,外部验证均方根误差(RMSEP)分别为0.058和0.297,相对分析误差(RPD)分别为2.09和2.97,具备近似定量估测土壤Cd含量的能力及定量估测土壤As含量的良好精度。通过地面实测数据验证,2个最佳估测模型预测精度分别达70%及80%以上;且光谱预处理技术可以去除原始反射率的冗余信息并减弱背景噪声,突出光谱信息;采用遗传算法先筛选特征波段再进行偏最小二乘回归建模,可提高模型的精度。研究可为实现作物高光谱定量反演区域农田土壤重金属污染以及修复农田生态污染遥感监测提供依据。 展开更多
关键词 水稻田 土壤-作物 重金属 高光谱遥感 估测模型 偏最小二乘回归 模型精度验证
在线阅读 下载PDF
利用高光谱遥感技术监测小麦土壤重金属污染 被引量:23
2
作者 钟亮 钱家炜 +3 位作者 储学远 钱志红 王淼 李建龙 《农业工程学报》 EI CAS CSCD 北大核心 2023年第5期265-270,共6页
为了探讨基于小麦叶片高光谱间接估测土壤重金属含量的潜力,该研究以江苏省宜兴市徐舍镇为研究区域,于2019-2020年采集农田土壤样品和小麦叶片光谱,经7种不同的光谱变换预处理后,以遗传算法(genetic algorithm,GA)优化的偏最小二乘回归... 为了探讨基于小麦叶片高光谱间接估测土壤重金属含量的潜力,该研究以江苏省宜兴市徐舍镇为研究区域,于2019-2020年采集农田土壤样品和小麦叶片光谱,经7种不同的光谱变换预处理后,以遗传算法(genetic algorithm,GA)优化的偏最小二乘回归算法(partial least squares regression,PLSR)对预处理后的光谱建立土壤重金属镉(Cd)和砷(As)含量的估测模型,并对模型结果进行精度评价。研究结果表明:1)光谱预处理技术能够突出光谱中的一些隐藏信息,对小麦叶片光谱进行微分变换、多元散射校正、标准正态变换等数学变换后更加有利于提取光谱敏感信息。2)GA-PLSR相较于一般的PLSR方法提高了模型精度,将GA用于光谱波段选择可以优化模型精度和提高稳定性。3)土壤Cd含量的最佳估测模型为标准正态变换预处理光谱与GA-PLSR结合,其外部验证的决定系数为0.87、均方根误差为0.04 mg/kg、相对分析误差为2.72;土壤As含量的最佳估测模型为多元散射校正预处理光谱与GA-PLSR结合,其外部验证的决定系数为0.91、均方根误差为0.32 mg/kg,相对分析误差为3.25。因此,能够利用小麦叶片高光谱间接估测土壤重金属Cd和As含量,该研究为将来实现定量、动态、无损遥感监测大面积农田土壤重金属污染状况提供参考依据。 展开更多
关键词 高光谱 遥感 土壤 重金属 小麦农田 光谱变换 土壤-作物场景监测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部