期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度残差金字塔的皮肤病变分割与特征提取研究
1
作者 董春序 李雪 陈思光 《传感技术学报》 北大核心 2025年第2期263-271,共9页
由于皮肤病的类内差异大、类间差异小及样本分布不均衡导致恶性皮肤病智能诊断误诊率极高,因此提出一种基于深度残差金字塔的皮肤病变分割与特征提取机制。具体地,对比主流的单一尺度网络输出,为了提高特征提取和训练结果的准确度,构建... 由于皮肤病的类内差异大、类间差异小及样本分布不均衡导致恶性皮肤病智能诊断误诊率极高,因此提出一种基于深度残差金字塔的皮肤病变分割与特征提取机制。具体地,对比主流的单一尺度网络输出,为了提高特征提取和训练结果的准确度,构建了一个深度残差金字塔多尺度编码网络,将瓶颈层划分为多尺度编码网络,通过提取多尺度特征,实现网络分割与提取结果的输出。进一步,为了解决样本不均衡问题,设计了基于焦点损失的损失梯度监督机制,即通过焦点损失增加模型对难分样本的关注度,同时通过梯度协调机制减小难分样本和离群点对模型整体准确率的影响,从而达到减小类别不平衡对诊断结果的影响。实验结果表明,所提机制的分割与提取与现有相关方案相比,Jaccard系数提高了3%~10%,达到82.3%。 展开更多
关键词 皮肤病变 深度残差网络 特征金字塔 损失函数
在线阅读 下载PDF
融合残差Inception与双向ConvGRU的皮肤病变智能分割
2
作者 顾敏杰 李雪 陈思光 《数据采集与处理》 CSCD 北大核心 2023年第4期937-946,共10页
由于皮肤病病灶的形状、颜色以及纹理差异极大,且边界不明确,使得传统深度学习方法很难对其进行准确分割。因此本文提出了一种融合残差Inception与双向卷积门控循环单元(Convolutional gated recurrent unit,ConvGRU)的皮肤病变智能分... 由于皮肤病病灶的形状、颜色以及纹理差异极大,且边界不明确,使得传统深度学习方法很难对其进行准确分割。因此本文提出了一种融合残差Inception与双向卷积门控循环单元(Convolutional gated recurrent unit,ConvGRU)的皮肤病变智能分割模型。首先设计了一种云边协同的皮肤病变智能分割服务网络模型,通过该网络模型,用户可以获得快速、准确的分割服务;其次,构建了一种新的皮肤病变智能分割模型,通过融合残差Inception与双向ConvGRU,该模型能融合不同尺度特征,提高模型特征提取能力,并能充分利用底层特征与语义特征之间的关系,捕获更丰富的全局上下文信息,取得更好的分割性能;最后,在ISIC 2018数据集上的实验结果表明,所提出的智能分割模型与近期提出的几种U-Net扩展模型相比,取得了更高的准确率与Jaccard系数。 展开更多
关键词 皮肤病 图像分割 残差网络 U型卷积神经网络 卷积门控循环单元
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部