期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于窄带光谱图像分析的小麦冠层植被指数测量方法研究
被引量:
1
1
作者
余洪锋
徐焕良
+4 位作者
丁永前
杨紫楠
窦祥林
李庆
关心桐
《南京农业大学学报》
CAS
CSCD
北大核心
2023年第1期189-199,共11页
[目的]针对小麦生长早期植被指数易受土壤背景干扰的问题,提出了一种基于窄带光谱图像分析的小麦植被指数测量方法。[方法]构建了多镜头结构的窄带光谱图像获取装置,实时获取656和770 nm的田间小麦窄带光谱图像。运用简单线性聚类(simpl...
[目的]针对小麦生长早期植被指数易受土壤背景干扰的问题,提出了一种基于窄带光谱图像分析的小麦植被指数测量方法。[方法]构建了多镜头结构的窄带光谱图像获取装置,实时获取656和770 nm的田间小麦窄带光谱图像。运用简单线性聚类(simple linear iterative clustering, SLIC)和VGG16(visual geometry group network 16)全卷积神经网络对小麦近红外窄带光谱图像进行超像素聚类和分类,把交并比(Qseg)、综合评价指标(F值)、精度(Precision)作为分割精度评价指标,分析传统阈值分割方法和本研究方法去土壤背景干扰的性能差异。去除土壤背景后的窄带光谱图像采用太阳光免白板标定方法计算植被指数,并与GreenSeeker RT200的实测数据进行对比分析,定性定量评价本研究方法去除土壤背景干扰的性能。[结果]试验共采集12个小麦品种、2个施氮水平、24块种植小区图像,Qseg、Precision和F值的平均值分别为90.41%、80.82%和72.73%,分割性能均优于传统的阈值分割方法。针对相同测试田块,GreenSeeker RT200测量的各小区归一化植被指数(normalized difference vegetation index, NDVI)变异系数的最大值、平均值和标准差分别为47.12%、33.61%、10.17%,而本测量方法的各小区NDVI的相应指标值分别为18.59%、9.61%、3.88%;当采样小区小麦封行后,本方法所提取的NDVI与GreenSeeker RT200的测量值具有较高的相关性,决定系数为0.895 9。[结论]该方法可以完成复杂土壤背景、大田光照变化条件下的小麦窄带光谱图像的冠层提取与植被指数测量,可为多镜头结构的作物冠层反射光谱仪的优化设计提供参考。
展开更多
关键词
小麦
窄带光谱图像
冠层分割
VGG16神经网络
超像素
植被指数
在线阅读
下载PDF
职称材料
题名
基于窄带光谱图像分析的小麦冠层植被指数测量方法研究
被引量:
1
1
作者
余洪锋
徐焕良
丁永前
杨紫楠
窦祥林
李庆
关心桐
机构
南京农业大学
工学院
南京农业大学
人工智能学院
南京农业大学现代作物生产省部共建协同创新中心
出处
《南京农业大学学报》
CAS
CSCD
北大核心
2023年第1期189-199,共11页
基金
国家重点研发计划项目(2016YFD070030403)。
文摘
[目的]针对小麦生长早期植被指数易受土壤背景干扰的问题,提出了一种基于窄带光谱图像分析的小麦植被指数测量方法。[方法]构建了多镜头结构的窄带光谱图像获取装置,实时获取656和770 nm的田间小麦窄带光谱图像。运用简单线性聚类(simple linear iterative clustering, SLIC)和VGG16(visual geometry group network 16)全卷积神经网络对小麦近红外窄带光谱图像进行超像素聚类和分类,把交并比(Qseg)、综合评价指标(F值)、精度(Precision)作为分割精度评价指标,分析传统阈值分割方法和本研究方法去土壤背景干扰的性能差异。去除土壤背景后的窄带光谱图像采用太阳光免白板标定方法计算植被指数,并与GreenSeeker RT200的实测数据进行对比分析,定性定量评价本研究方法去除土壤背景干扰的性能。[结果]试验共采集12个小麦品种、2个施氮水平、24块种植小区图像,Qseg、Precision和F值的平均值分别为90.41%、80.82%和72.73%,分割性能均优于传统的阈值分割方法。针对相同测试田块,GreenSeeker RT200测量的各小区归一化植被指数(normalized difference vegetation index, NDVI)变异系数的最大值、平均值和标准差分别为47.12%、33.61%、10.17%,而本测量方法的各小区NDVI的相应指标值分别为18.59%、9.61%、3.88%;当采样小区小麦封行后,本方法所提取的NDVI与GreenSeeker RT200的测量值具有较高的相关性,决定系数为0.895 9。[结论]该方法可以完成复杂土壤背景、大田光照变化条件下的小麦窄带光谱图像的冠层提取与植被指数测量,可为多镜头结构的作物冠层反射光谱仪的优化设计提供参考。
关键词
小麦
窄带光谱图像
冠层分割
VGG16神经网络
超像素
植被指数
Keywords
wheat
narrow-band spectral image
canopy segmentation
VGG16 neural network
super pixel
vegetation index
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于窄带光谱图像分析的小麦冠层植被指数测量方法研究
余洪锋
徐焕良
丁永前
杨紫楠
窦祥林
李庆
关心桐
《南京农业大学学报》
CAS
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部