期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PSO-DNN的平养鸡舍冬季氨气浓度预测模型研究
被引量:
6
1
作者
邹修国
宋圆圆
+3 位作者
徐泽颖
张世凯
张杰
殷正凌
《南京农业大学学报》
CAS
CSCD
北大核心
2021年第1期184-193,共10页
[目的]氨气是鸡舍内影响肉鸡生长发育的主要有害气体,由于冬季鸡舍低通风量会导致氨气浓度超标,使肉鸡的免疫功能下降,导致呼吸系统疾病发生。针对鸡舍氨气预测精度不高、效率不理想等问题,提出基于粒子群算法(particle swarm optimizat...
[目的]氨气是鸡舍内影响肉鸡生长发育的主要有害气体,由于冬季鸡舍低通风量会导致氨气浓度超标,使肉鸡的免疫功能下降,导致呼吸系统疾病发生。针对鸡舍氨气预测精度不高、效率不理想等问题,提出基于粒子群算法(particle swarm optimization,PSO)优化深度神经网络(deep neural network,DNN)的预测模型,实现冬季氨气浓度预警并及时调控鸡舍内氨气的浓度。[方法]选取自建平养鸡舍环境参数数据(温度、相对湿度和氨气浓度)和鸡自身情况数据(鸡龄和鸡进入鸡舍时间)建立模型,对鸡舍内未来1 h氨气浓度进行预测。PSO-DNN预测模型首先采用PSO优化DNN中的batch_size参数,以平均绝对误差(mean absolute error,MAE)作为目标函数,经过多次迭代后,得到最佳的batch_size,再以此构建DNN模型,以数据集的前70%数据作为训练集进行DNN模型训练,经过DNN的线性运算和激活运算后,采用数据集的后30%数据对模型进行验证,并对模型进行评估。[结果]将PSO-DNN模型与DNN和随机森林模型对比,PSO-DNN模型氨气预测结果的MAE为1.886 mg·m^-3,DNN和随机森林模型预测的MAE分别为4.297和2.855 mg·m^-3。[结论]PSO-DNN模型的预测精度最高,与DNN和随机森林模型预测结果相比,其MAE分别降低56.1%和33.9%,可为平养鸡舍内氨气浓度预测提供方法参考,有助于及时、准确地调控鸡舍内氨气浓度。
展开更多
关键词
平养鸡舍
氨气浓度
深度神经网络
粒子群算法
随机森林
在线阅读
下载PDF
职称材料
题名
基于PSO-DNN的平养鸡舍冬季氨气浓度预测模型研究
被引量:
6
1
作者
邹修国
宋圆圆
徐泽颖
张世凯
张杰
殷正凌
机构
南京农业大学人工智能学院/江苏省智能化农业装备重点实验室
出处
《南京农业大学学报》
CAS
CSCD
北大核心
2021年第1期184-193,共10页
基金
中国博士后科学基金资助项目(2015M571782)
江苏省农业科技自主创新资金项目[CX(19)2025]
中央高校科研业务基本业务费自主创新重点项目(KYTZ201661)
文摘
[目的]氨气是鸡舍内影响肉鸡生长发育的主要有害气体,由于冬季鸡舍低通风量会导致氨气浓度超标,使肉鸡的免疫功能下降,导致呼吸系统疾病发生。针对鸡舍氨气预测精度不高、效率不理想等问题,提出基于粒子群算法(particle swarm optimization,PSO)优化深度神经网络(deep neural network,DNN)的预测模型,实现冬季氨气浓度预警并及时调控鸡舍内氨气的浓度。[方法]选取自建平养鸡舍环境参数数据(温度、相对湿度和氨气浓度)和鸡自身情况数据(鸡龄和鸡进入鸡舍时间)建立模型,对鸡舍内未来1 h氨气浓度进行预测。PSO-DNN预测模型首先采用PSO优化DNN中的batch_size参数,以平均绝对误差(mean absolute error,MAE)作为目标函数,经过多次迭代后,得到最佳的batch_size,再以此构建DNN模型,以数据集的前70%数据作为训练集进行DNN模型训练,经过DNN的线性运算和激活运算后,采用数据集的后30%数据对模型进行验证,并对模型进行评估。[结果]将PSO-DNN模型与DNN和随机森林模型对比,PSO-DNN模型氨气预测结果的MAE为1.886 mg·m^-3,DNN和随机森林模型预测的MAE分别为4.297和2.855 mg·m^-3。[结论]PSO-DNN模型的预测精度最高,与DNN和随机森林模型预测结果相比,其MAE分别降低56.1%和33.9%,可为平养鸡舍内氨气浓度预测提供方法参考,有助于及时、准确地调控鸡舍内氨气浓度。
关键词
平养鸡舍
氨气浓度
深度神经网络
粒子群算法
随机森林
Keywords
broiler chamber
ammonia concentration
deep neural network(DNN)
particle swarm optimization(PSO)
random forest
分类号
S831.4 [农业科学—畜牧学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PSO-DNN的平养鸡舍冬季氨气浓度预测模型研究
邹修国
宋圆圆
徐泽颖
张世凯
张杰
殷正凌
《南京农业大学学报》
CAS
CSCD
北大核心
2021
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部