为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating kn...为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating knowledge and semantic information,KSDASum)。该方法采用双编码器对原文语义信息进行充分编码,文本编码器获取全文的语义信息,图结构编码器维护全文上下文结构信息。解码器部分采用基于Transformer结构和指针网络,更好地捕捉文本和结构信息进行交互,并利用指针网络的优势提高生成摘要的准确性。同时,训练过程中采用强化学习中自我批判的策略梯度优化模型能力。该方法在CNN/Daily Mail和XSum公开数据集上与GSUM生成式摘要方法相比,在评价指标上均获得最优的结果,证明了所提模型能够有效地利用知识和语义信息,提升了生成文本摘要的能力。展开更多
随着云计算领域数据安全和用户隐私的需求发展,密文图像可逆信息隐藏(reversible data hiding in encrypted images,RDHEI)技术已经越来越受到人们的关注,但目前大多数的密文图像可逆信息隐藏都是基于灰度图像,它们与彩色图像相比在应...随着云计算领域数据安全和用户隐私的需求发展,密文图像可逆信息隐藏(reversible data hiding in encrypted images,RDHEI)技术已经越来越受到人们的关注,但目前大多数的密文图像可逆信息隐藏都是基于灰度图像,它们与彩色图像相比在应用场景上有很大局限性.此外,由于目前关于密文域的可逆信息隐藏方法主要集中于灰度图像,同时针对彩色图像的特性优化较少,往往无法对彩色载体图像实现更好的性能,所以进一步加强对基于彩色密文图像的可逆信息隐藏算法的研究具有很高的价值.首次提出了一种可以用于云计算环境的基于颜色通道相关性和熵编码的高性能彩色密文图像可逆信息隐藏算法(RDHEI-CE).首先,原始彩色图像的RGB通道被分离并分别得出预测误差.接下来,通过自适应熵编码和预测误差直方图生成嵌入空间.之后通过颜色通道相关性进一步扩展嵌入空间,并将秘密信息嵌入加密图像中.最后,对载密图像进行可逆置乱以抵御唯密文攻击.与大多数最先进的可逆信息隐藏方法相比,实验表明RDHEI-CE算法提供了更高的嵌入率和更好的安全性,并且拓宽了可逆信息隐藏在云端的应用场景.展开更多
为了有效解决现有彩色图像可逆数据隐藏(Reversible Data Hiding,RDH)算法中隐写图像视觉质量低的问题,提出一种多层次插值预测和全局排序的彩色图像RDH方案.首先,为了充分利用图像中不同纹理区域的特征,设计一种多层次插值预测方法,显...为了有效解决现有彩色图像可逆数据隐藏(Reversible Data Hiding,RDH)算法中隐写图像视觉质量低的问题,提出一种多层次插值预测和全局排序的彩色图像RDH方案.首先,为了充分利用图像中不同纹理区域的特征,设计一种多层次插值预测方法,显著地提升了像素的预测精度;然后,设计一种基于复杂度的全局排序策略,分别对彩色图像三个通道中的预测误差进行排序,充分利用每个通道中预测误差的全局特征,生成分布更加集中的三维预测误差直方图(Three-Dimensional Prediction Error Histogram,3D PEH);最后,利用自适应三维映射策略修改误差直方图,嵌入秘密数据.实验结果表明,与最新的一些方案相比,所提的方法实现了更好的嵌入性能.展开更多
当物联网设备(Internet of Things Device,IoTD)面临随机到达且复杂度高的计算任务时,因自身计算资源和能力所限,无法进行实时高效的处理。为了应对此类问题,设计了一种两层无人机辅助的移动边缘计算(Mobile Edge Computing,MEC)模型。...当物联网设备(Internet of Things Device,IoTD)面临随机到达且复杂度高的计算任务时,因自身计算资源和能力所限,无法进行实时高效的处理。为了应对此类问题,设计了一种两层无人机辅助的移动边缘计算(Mobile Edge Computing,MEC)模型。在该模型中,考虑到IoTD处理随机计算任务时的局限性,引入多架配备MEC服务器的下层无人机和单架上层无人机进行协同处理。为了实现系统能耗最优化,提出了一种资源优化和多无人机位置部署方案,根据计算任务到达的随机性,应用李雅普诺夫优化方法将能耗最小化问题转化为一个确定性问题,应用差分进化(Differential Evolution,DE)算法进行多次变异、交叉和选择取得无人机的优化部署方案;采用深度确定性策略梯度(Depth Deterministic policy Gradient,DDPG)算法对带宽分配、计算资源分配、传输功率分配和任务卸载分配进行联合优化。实验结果表明,该算法相较于对比算法系统能耗降低35%,充分验证了其可行性和有效性。展开更多
文摘为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating knowledge and semantic information,KSDASum)。该方法采用双编码器对原文语义信息进行充分编码,文本编码器获取全文的语义信息,图结构编码器维护全文上下文结构信息。解码器部分采用基于Transformer结构和指针网络,更好地捕捉文本和结构信息进行交互,并利用指针网络的优势提高生成摘要的准确性。同时,训练过程中采用强化学习中自我批判的策略梯度优化模型能力。该方法在CNN/Daily Mail和XSum公开数据集上与GSUM生成式摘要方法相比,在评价指标上均获得最优的结果,证明了所提模型能够有效地利用知识和语义信息,提升了生成文本摘要的能力。
文摘随着云计算领域数据安全和用户隐私的需求发展,密文图像可逆信息隐藏(reversible data hiding in encrypted images,RDHEI)技术已经越来越受到人们的关注,但目前大多数的密文图像可逆信息隐藏都是基于灰度图像,它们与彩色图像相比在应用场景上有很大局限性.此外,由于目前关于密文域的可逆信息隐藏方法主要集中于灰度图像,同时针对彩色图像的特性优化较少,往往无法对彩色载体图像实现更好的性能,所以进一步加强对基于彩色密文图像的可逆信息隐藏算法的研究具有很高的价值.首次提出了一种可以用于云计算环境的基于颜色通道相关性和熵编码的高性能彩色密文图像可逆信息隐藏算法(RDHEI-CE).首先,原始彩色图像的RGB通道被分离并分别得出预测误差.接下来,通过自适应熵编码和预测误差直方图生成嵌入空间.之后通过颜色通道相关性进一步扩展嵌入空间,并将秘密信息嵌入加密图像中.最后,对载密图像进行可逆置乱以抵御唯密文攻击.与大多数最先进的可逆信息隐藏方法相比,实验表明RDHEI-CE算法提供了更高的嵌入率和更好的安全性,并且拓宽了可逆信息隐藏在云端的应用场景.
文摘当物联网设备(Internet of Things Device,IoTD)面临随机到达且复杂度高的计算任务时,因自身计算资源和能力所限,无法进行实时高效的处理。为了应对此类问题,设计了一种两层无人机辅助的移动边缘计算(Mobile Edge Computing,MEC)模型。在该模型中,考虑到IoTD处理随机计算任务时的局限性,引入多架配备MEC服务器的下层无人机和单架上层无人机进行协同处理。为了实现系统能耗最优化,提出了一种资源优化和多无人机位置部署方案,根据计算任务到达的随机性,应用李雅普诺夫优化方法将能耗最小化问题转化为一个确定性问题,应用差分进化(Differential Evolution,DE)算法进行多次变异、交叉和选择取得无人机的优化部署方案;采用深度确定性策略梯度(Depth Deterministic policy Gradient,DDPG)算法对带宽分配、计算资源分配、传输功率分配和任务卸载分配进行联合优化。实验结果表明,该算法相较于对比算法系统能耗降低35%,充分验证了其可行性和有效性。