期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
PCA+GWO集成特征选择和模型堆叠的客户流失预测
1
作者 刘梅 郑立君 +1 位作者 段永良 段红秀 《计算机工程与应用》 北大核心 2025年第15期329-342,共14页
客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法... 客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法,并用模型堆叠构建了客户流失预测模型。提出了利用Pearson系数和随机森林(RF)的特征重要性来确定需要降维特征组的方法。改进了灰狼优化算法(GWO)中的灰狼位置更新机制和收敛条件,并将其应用于选择最佳特征子集的过程中。选取了10种不同的机器学习模型进行训练,挑选出F1-score表现最优的模型作为基模型,进行元模型训练。实验结果表明,使用某酒店客户信息数据集时,改进后的GWO算法收敛速度显著提升,且预测模型的F1-score达到了97.9%,该模型具有较强的泛化能力。 展开更多
关键词 特征选择 随机森林(RF) 主成分分析(PCA) 灰狼优化(GWO)算法 模型堆叠
在线阅读 下载PDF
面向科技前瞻预测的大数据治理研究 被引量:9
2
作者 王俊 王修来 +1 位作者 庞威 赵鸿飞 《计算机科学》 CSCD 北大核心 2021年第9期36-42,共7页
从模仿到创新、从跟随到引领,不仅是现阶段我国科学技术发展需要完成的重大转变,更是国家发展的重大战略需求。近年来,国内外相关学者陆续开展了科技发展趋势分析和热点跟踪等方面的研究,但由于缺乏系统的大数据采集与治理体系,其数据... 从模仿到创新、从跟随到引领,不仅是现阶段我国科学技术发展需要完成的重大转变,更是国家发展的重大战略需求。近年来,国内外相关学者陆续开展了科技发展趋势分析和热点跟踪等方面的研究,但由于缺乏系统的大数据采集与治理体系,其数据分析与挖掘范围往往局限于科技文献这一单一数据样本。文中面向科技发展前瞻预测这一目标,全面分析了影响科学技术发展过程的各类科技文献、学者动态、论坛热点和社交评论等海量异构数据,通过构建数据驱动的大数据治理体系,解决科技大数据在探测发现、精准采集、清洗聚合、融合处理、模型构建、预测计算过程中的数据整治难题。同时,在大数据整治基础上采用LDA模型实现技术趋势预测与分析,研究成果为系统解决海量科技大数据中隐含信息发现和关系推理提供了技术支撑。 展开更多
关键词 大数据 大数据治理 前瞻预测 体系研究 LDA模型 数据清洗
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部