期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据降噪启发式算法的太阳电池参数辨识
1
作者 古旻琦 吕智林 +2 位作者 陆剑锋 海涛 王钧 《太阳能学报》 北大核心 2025年第7期589-597,共9页
实测电压-电流(V-I)数据中的噪声会降低启发式算法(MhA)的太阳电池参数辨识精度。为解决该问题,基于核极限学习机(KELM)提出一种数据降噪启发式算法(DDMhA)以实现对太阳电池参数的精确辨识。利用KELM对V-I数据进行训练以滤除噪声,提升Mh... 实测电压-电流(V-I)数据中的噪声会降低启发式算法(MhA)的太阳电池参数辨识精度。为解决该问题,基于核极限学习机(KELM)提出一种数据降噪启发式算法(DDMhA)以实现对太阳电池参数的精确辨识。利用KELM对V-I数据进行训练以滤除噪声,提升MhA适应度函数的准确度,增强其全局搜索能力以保障参数辨识精度。在验证实验中,采用双二极管太阳电池模型(DDM)进行参数辨识,对50组混淆V-I数据分别进行不降噪以及降噪处理,随后对比不同处理方式下6种MhA的参数辨识结果。根据实验结果分析,DDMhA能够滤除数据噪声,有效提升原MhA的辨识精度和收敛速度。 展开更多
关键词 太阳电池 参数辨识 启发式算法 数据降噪 核极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部