针对AGC控制中火电机组响应时滞长、机组爬坡速率低的问题,提出了一种基于模糊控制策略的电池储能系统(Battery Energy Storage System,BESS)辅助AGC调频方法。该方法以区域控制偏差(Area Control Error,ACE)及其变化率作为模糊控制器...针对AGC控制中火电机组响应时滞长、机组爬坡速率低的问题,提出了一种基于模糊控制策略的电池储能系统(Battery Energy Storage System,BESS)辅助AGC调频方法。该方法以区域控制偏差(Area Control Error,ACE)及其变化率作为模糊控制器的输入量,BESS的参考功率变化量作为输出量,根据系统的运行状态调节BESS输出功率,辅助火电机组改善电网的动态调频性能。基于Matlab/Simulink平台的仿真结果表明,BESS能够迅速响应负荷扰动,减小了系统频率偏差和联络线功率偏差,降低了系统的超调作用,有助于提高电网AGC调频能力和增强系统的稳定性。展开更多
传统调频机组因其固有特性而不易实现实际出力与理论计算值相吻合,并且工作在经济运行区内,难以应对电力系统快速发展、新能源发电并入等引起的频率稳定问题。电池储能系统(battery energy storage system,BESS)具有快速、精确的功率响...传统调频机组因其固有特性而不易实现实际出力与理论计算值相吻合,并且工作在经济运行区内,难以应对电力系统快速发展、新能源发电并入等引起的频率稳定问题。电池储能系统(battery energy storage system,BESS)具有快速、精确的功率响应能力等优势,从而成为新的辅助调频手段的关注热点。在探讨BESS参与电网一、二次调频的实现方法基础上,对与火电机组具备同等调频能力的BESS功率与容量进行配置,并提出了储能容量控制策略建议。示例计算和对比分析,验证了该配置方案的可行性和储能系统参与电网调频的可靠性,为新调频手段的选取与分析提供了借鉴。展开更多
文摘针对AGC控制中火电机组响应时滞长、机组爬坡速率低的问题,提出了一种基于模糊控制策略的电池储能系统(Battery Energy Storage System,BESS)辅助AGC调频方法。该方法以区域控制偏差(Area Control Error,ACE)及其变化率作为模糊控制器的输入量,BESS的参考功率变化量作为输出量,根据系统的运行状态调节BESS输出功率,辅助火电机组改善电网的动态调频性能。基于Matlab/Simulink平台的仿真结果表明,BESS能够迅速响应负荷扰动,减小了系统频率偏差和联络线功率偏差,降低了系统的超调作用,有助于提高电网AGC调频能力和增强系统的稳定性。
文摘传统调频机组因其固有特性而不易实现实际出力与理论计算值相吻合,并且工作在经济运行区内,难以应对电力系统快速发展、新能源发电并入等引起的频率稳定问题。电池储能系统(battery energy storage system,BESS)具有快速、精确的功率响应能力等优势,从而成为新的辅助调频手段的关注热点。在探讨BESS参与电网一、二次调频的实现方法基础上,对与火电机组具备同等调频能力的BESS功率与容量进行配置,并提出了储能容量控制策略建议。示例计算和对比分析,验证了该配置方案的可行性和储能系统参与电网调频的可靠性,为新调频手段的选取与分析提供了借鉴。