期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv4-tiny的安全标志检测
1
作者 赵重保 叶亭君 +4 位作者 费斐 康士明 赵雷 王瑶涵 宋泽阳 《中国安全生产科学技术》 北大核心 2025年第6期149-158,共10页
为有效实现高效安全标志检测和对不安全行为预警,基于深度学习YOLOv4-tiny模型引入ECANet注意力机制,结合Soft-NMS算法提出1种用于检测安全标志的模型。模型中数据集包含2000个安全标志,其中训练集1620张、验证集180张和测试集200张。... 为有效实现高效安全标志检测和对不安全行为预警,基于深度学习YOLOv4-tiny模型引入ECANet注意力机制,结合Soft-NMS算法提出1种用于检测安全标志的模型。模型中数据集包含2000个安全标志,其中训练集1620张、验证集180张和测试集200张。研究结果表明:该模型的检测精度达到97.76%,比YOLOv4-tiny和Faster RCNN卷积神经网络算法分别提高了7.55百分点和9.23百分点;改进的模型可避免YOLOv4-tiny和Faster RCNN卷积神经网络算法中出现的过拟合现象,泛化性能更好,在检测小目标区域和弱光条件下目标时,改进模型优势更加突出。研究结果可为施工场地安全标志的智能化监控与风险预警提供技术参考。 展开更多
关键词 安全标志检测 计算机视觉 YOLOv4-tiny 注意力机制 Soft-NMS算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部