期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向连续离散系统的自适应最大相关熵滤波算法 被引量:3
1
作者 胡浩然 陈树新 +3 位作者 吴昊 何仁珂 吴强 张喜庆 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第6期133-141,共9页
针对目标跟踪中运动模型不精确和测量异常导致的传统滤波算法精度下降问题,提出了一种鲁棒平方根连续-离散自适应最大相关熵容积卡尔曼滤波(RSRCD-AMCCKF)算法。在目标跟踪问题中采用了精度更高的连续-离散时间模型,提高了目标跟踪的解... 针对目标跟踪中运动模型不精确和测量异常导致的传统滤波算法精度下降问题,提出了一种鲁棒平方根连续-离散自适应最大相关熵容积卡尔曼滤波(RSRCD-AMCCKF)算法。在目标跟踪问题中采用了精度更高的连续-离散时间模型,提高了目标跟踪的解算精度;将加权最小二乘方法与传统最大相关熵准则相结合,得到改进的相关熵代价权函数,之后引入连续-离散时间滤波框架,提高了滤波算法在测量异常情况下的鲁棒性;以高斯核函数作为相关熵的调整因子,依据不同测量环境选择自适应因子,进而对观测噪声的协方差矩阵进行调整。仿真结果表明:与传统算法相比,当测量噪声为高斯噪声时,RSRCD-AMCCKF算法对目标位置和速度估计的精度分别提高了38.4%和27.3%;当测量噪声为非高斯噪声时,RSRCD-AMCCKF算法对目标位置和速度估计的精度分别提高了23.5%和23.9%;当测量值发生突变时,RSRCD-AMCCKF算法对目标位置和速度估计的精度分别提高了12.6%和7.1%。RSRCD-AMCCKF算法在各类测量条件下都具有更高的精度和鲁棒性,更接近目标跟踪的克拉美罗下界,能够较好地实现滤波精度和抗异常测量的统一。 展开更多
关键词 目标跟踪 连续-离散时间系统 最大相关熵准则 容积卡尔曼滤波 非高斯噪声 鲁棒性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部