期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PNet:融合注意力机制的多级低照度图像增强网络 被引量:4
1
作者 杨微 张志威 成海秀 《计算机应用研究》 CSCD 北大核心 2022年第5期1579-1585,共7页
低照度图像存在亮度低、噪声伪影、细节丢失、颜色失真等退化问题,使得低照度图像增强成为一个多目标增强任务。现有多数增强算法不能很好地在多个增强目标上取得综合的性能,对此,提出PNet——融合注意力机制的多级低照度图像增强网络模... 低照度图像存在亮度低、噪声伪影、细节丢失、颜色失真等退化问题,使得低照度图像增强成为一个多目标增强任务。现有多数增强算法不能很好地在多个增强目标上取得综合的性能,对此,提出PNet——融合注意力机制的多级低照度图像增强网络模型,通过构建多级串联增强任务子网,结合注意力机制设计多通道信息融合模块进行有效特征筛选及记忆,网络以序列方式处理图像流,协同渐进式完成图像全局自适应亮度提升、噪声伪影抑制、细节恢复、颜色矫正等多任务。此外,通过与现有主流算法进行定量及定性分析对比,结果显示该方法能实现自适应图像亮度增强、细节对比度提升,增强后图像整体亮度自然,没有明显光晕及伪影且色彩较丰富真实,在PSNR、SSIM、RMSE指标中较次优算法分别提升0.229、0.112、0.335。实验结果表明,该方法在低照度图像增强的多目标任务上取得了综合较优秀的表现,具有一定的应用价值。 展开更多
关键词 低照度图像增强 注意力机制 长短记忆 监督学习 多级子网
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部