期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mecanum轮全向AGV轨迹跟踪级联控制器设计
1
作者 文生平 苏毅龙 瞿弘毅 《华南理工大学学报(自然科学版)》 北大核心 2025年第1期49-61,共13页
针对四Mecanum轮驱动的自动导引车(AGV)的轨迹跟踪控制问题,设计了一种模型预测控制(MPC)和自适应滑模控制(SMC)级联的控制器,来改善控制精度和稳定性,提高控制过程的层次性、针对性和有效性。在运动学层面,建立了AGV轨迹跟踪误差模型,... 针对四Mecanum轮驱动的自动导引车(AGV)的轨迹跟踪控制问题,设计了一种模型预测控制(MPC)和自适应滑模控制(SMC)级联的控制器,来改善控制精度和稳定性,提高控制过程的层次性、针对性和有效性。在运动学层面,建立了AGV轨迹跟踪误差模型,将其转化为二次规划问题,并加入约束条件,配合模型预测控制的滚动优化来在线求解二次规划的最优解,将AGV位姿误差转化为轮子转速的期望输出;在动力学层面,采用滑模控制得到轮子的输出力矩,实现轮子对期望转速的跟踪,引入具有快速准确逼近能力的极限学习机(ELM)神经网络对模型不确定性和未知干扰进行在线观测,并与滑模控制相结合自适应抵消干扰,进一步提高控制器的鲁棒性。在余弦扰动和脉冲干扰下对控制器进行仿真验证,并将结果与PID控制结果进行对比,发现MPC+SMC级联控制器的跟踪效果具有明显优势;与采用径向基函数(RBF)神经网络观测的级联控制器的对比表明,采用ELM观测器的控制器对干扰的鲁棒性更强,在各转速条件下与干扰曲线的拟合度均超过95%,其跟踪误差在多项指标上相比其他方法小1个数量级,最大位置偏差仅为毫米级。轨迹跟踪样机实验结果验证了该控制器的实用性和可行性。 展开更多
关键词 MECANUM轮 轨迹跟踪 模型预测控制 滑模控制 极限学习机
在线阅读 下载PDF
基于Stacking集成学习的注塑件尺寸预测方法 被引量:9
2
作者 宋建 王文龙 +1 位作者 李东 梁家睿 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第6期19-26,共8页
机器学习算法能够处理高维和多变量数据,并在复杂和动态环境中提取数据中的隐藏关系,在注塑件尺寸预测中具有很好的应用前景。注塑件尺寸预测系统的性能取决于机器学习算法的选择,然而,传统的机器学习算法在实际应用中不能达到很好的预... 机器学习算法能够处理高维和多变量数据,并在复杂和动态环境中提取数据中的隐藏关系,在注塑件尺寸预测中具有很好的应用前景。注塑件尺寸预测系统的性能取决于机器学习算法的选择,然而,传统的机器学习算法在实际应用中不能达到很好的预测效果。为此,文中提出了一种基于Stacking集成学习的融合模型,首先采用优化的特征选择方法获得最佳的特征数量,然后通过对比分析单一模型的关联度和预测效果、不同Stacking学习器组合方式下模型的预测效果,得到预测性能最佳的模型,该模型的基学习器为极端梯度提升树(XGB)、轻量级梯度提升树(LGB)、核岭回归,元学习器为弹性网络回归。测试结果表明:该模型在注塑件尺寸预测方面的均方根误差和平均绝对误差较XGB和LGB模型分别降低了16%和20%左右,较传统支持向量机模型分别降低了45.22%和46.48%,同时模型预测结果可根据特征解释回溯到实际生产中,为制造工艺和工序的优化提供决策指导。 展开更多
关键词 注塑成型 预测 机器学习 集成学习 STACKING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部